Robust Optimizations For Equity-Linked Products

股票挂钩产品的稳健优化

基本信息

  • 批准号:
    RGPIN-2020-06821
  • 负责人:
  • 金额:
    $ 1.31万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

The main objective of this proposal is to develop robust hedging strategies for equity-linked products (ELPs). ELPs form a class of insurance products that offer limited participation in the performance of an equity index (Equity-indexed Annuity) or a mutual fund (Variable Annuity) while providing a predetermined guaranteed amount. ELPs are considered as long-term financial derivatives that include death, surrender, withdrawal, and/or accumulation guarantees. In analyzing the risk underlying these guarantees, Augustyniak & Boudreault (2012) study several econometric models and conduct out-of-sample analyses of these models, using the financial crisis (and the associated observed equity-linked returns) as the in-sample period. They observe that tail risk measures significantly vary across the various models. This stresses the importance of carefully selecting the model when hedging investment guarantees. Given that the Canadian Institute of Actuaries recommends the use of stochastic models for reserving future losses on ELPs, it is important to have a measure that can serve as a yardstick to both insurers and regulators in comparing various models, hence the consideration for robust approaches to evaluate ELPs. I propose to derive hedging strategies under worst-case scenarios and robust control approaches. Both concepts are robust adaptations of risk-control strategies introduced by Gaillardetz & Hachem (2019). Osei Mireku* (2019) investigates the robust counterpart hedging strategy when the CVaR is used in the constraint. He presents approximate solutions by sampling different uncertainty sets of probability mass functions. I intend to investigate other approaches (e.g. numerical methods) since simulation results are not consistent. Zhu & Fukushima (2009) apply the concept of worst-case local CVaR in portfolio management. Gaillardetz & Hachem (2019) show that hedging strategies obtained by minimizing the local CVaR are outperformed by strategies based on the coherent dynamic risk measure, which minimizes the local CVaR while penalizing the future losses. I propose to apply the results from Zhu & Fukushima (2009) and derive the worst-case coherent dynamic risk measure. I propose to investigate robust hedging strategies, where the risk measures are replaced by non-stochastic measurements in the risk-control strategies. These generalize the expensive super-replicating strategy in which no positive loss is allowed. The non-stochastic measurements may concede some positive losses, but restrain them by imposing constraints. Based on the results of Ben-Tal et al. (2009), computationally tractable equivalent reformulations can be used to relax the discrete assumption in the underlying financial process. The relaxation assumes a bounded continuous financial process, which is usually constrained using some upper and lower bounds. In this case, the solutions can be represented by the convex combination of the extremes.
本提案的主要目标是为股票关联产品(elp)制定稳健的对冲策略。elp是一种保险产品,提供有限的股票指数(股票指数年金)或共同基金(可变年金)的表现,同时提供预定的保证金额。elp被认为是一种长期金融衍生品,包括死亡、退保、提款和/或累积担保。在分析这些担保背后的风险时,Augustyniak & Boudreault(2012)研究了几个计量经济学模型,并对这些模型进行了样本外分析,使用金融危机(以及相关的观察到的与股票相关的回报)作为样本内期。他们观察到,尾部风险的度量在不同的模型中存在显著差异。这就强调了在对冲投资担保时谨慎选择模型的重要性。鉴于加拿大精算师协会建议使用随机模型来保留elp的未来损失,因此在比较各种模型时,有一种可以作为保险公司和监管机构衡量标准的措施是很重要的,因此需要考虑采用稳健的方法来评估elp。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gaillardetz, Patrice其他文献

Modeling mortality and pricing life annuities with Levy processes
  • DOI:
    10.1016/j.insmatheco.2015.06.008
  • 发表时间:
    2015-09-01
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Ahmadi, Seyed Saeed;Gaillardetz, Patrice
  • 通讯作者:
    Gaillardetz, Patrice
Simulating from the Heston model: A gamma approximation scheme
  • DOI:
    10.1515/mcma-2015-0105
  • 发表时间:
    2015-09-01
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Begin, Jean-Francois;Bedard, Mylene;Gaillardetz, Patrice
  • 通讯作者:
    Gaillardetz, Patrice

Gaillardetz, Patrice的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gaillardetz, Patrice', 18)}}的其他基金

Robust Optimizations For Equity-Linked Products
股票挂钩产品的稳健优化
  • 批准号:
    RGPIN-2020-06821
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Robust Optimizations For Equity-Linked Products
股票挂钩产品的稳健优化
  • 批准号:
    RGPIN-2020-06821
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Pricing and Hedging Equity-Linked Products Using Risk Measures
使用风险措施对股票挂钩产品进行定价和对冲
  • 批准号:
    RGPIN-2014-04020
  • 财政年份:
    2018
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Pricing and Hedging Equity-Linked Products Using Risk Measures
使用风险措施对股票挂钩产品进行定价和对冲
  • 批准号:
    RGPIN-2014-04020
  • 财政年份:
    2017
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Pricing and Hedging Equity-Linked Products Using Risk Measures
使用风险措施对股票挂钩产品进行定价和对冲
  • 批准号:
    RGPIN-2014-04020
  • 财政年份:
    2016
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Pricing and Hedging Equity-Linked Products Using Risk Measures
使用风险措施对股票挂钩产品进行定价和对冲
  • 批准号:
    RGPIN-2014-04020
  • 财政年份:
    2015
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Pricing and Hedging Equity-Linked Products Using Risk Measures
使用风险措施对股票挂钩产品进行定价和对冲
  • 批准号:
    RGPIN-2014-04020
  • 财政年份:
    2014
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Portfolio management for equity-indexed annuities
股票指数年金的投资组合管理
  • 批准号:
    327569-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Portfolio management for equity-indexed annuities
股票指数年金的投资组合管理
  • 批准号:
    327569-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Portfolio management for equity-indexed annuities
股票指数年金的投资组合管理
  • 批准号:
    327569-2009
  • 财政年份:
    2011
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

CAREER: Scalable Physics-Inspired Ising Computing for Combinatorial Optimizations
职业:用于组合优化的可扩展物理启发伊辛计算
  • 批准号:
    2340453
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Continuing Grant
Collaborative Research: Scalable Circuit theoretic Framework for Large Grid Simulations and Optimizations: from Combined T&D Planning to Electromagnetic Transients
协作研究:大型电网仿真和优化的可扩展电路理论框架:来自组合 T
  • 批准号:
    2330195
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Circuit theoretic Framework for Large Grid Simulations and Optimizations: from Combined T&D Planning to Electromagnetic Transients
协作研究:大型电网仿真和优化的可扩展电路理论框架:来自组合 T
  • 批准号:
    2330196
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Standard Grant
SBIR Phase I: Trajectory Optimizations and Learned Foliage Manipulation to Accelerate Throughput in Automated Strawberry Harvesting
SBIR 第一阶段:轨迹优化和学习叶子操纵,以提高自动化草莓收获的吞吐量
  • 批准号:
    2322402
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Reconfigurable Kernel Datapaths with Adaptive Optimizations
协作研究:CNS 核心:中:具有自适应优化的可重构内核数据路径
  • 批准号:
    2345339
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Standard Grant
Robust Optimizations For Equity-Linked Products
股票挂钩产品的稳健优化
  • 批准号:
    RGPIN-2020-06821
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
SPX: Collaborative Research: Cross-stack Memory Optimizations for Boosting I/O Performance of Deep Learning HPC Applications
SPX:协作研究:用于提升深度学习 HPC 应用程序 I/O 性能的跨堆栈内存优化
  • 批准号:
    2318628
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Standard Grant
Applied Harmonic Analysis Methods for Non-Convex Optimizations and Low-Rank Matrix Analysis
非凸优化和低阶矩阵分析的应用调和分析方法
  • 批准号:
    2108900
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Standard Grant
CAREER: SHF: Chiplet-Package Co-Optimizations for 2.5D Heterogeneous SoCs with Low-Overhead IOs
职业:SHF:具有低开销 IO 的 2.5D 异构 SoC 的 Chiplet 封装协同优化
  • 批准号:
    2047388
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Continuing Grant
Collaborative Research: CNS Core: Medium: Reconfigurable Kernel Datapaths with Adaptive Optimizations
协作研究:CNS 核心:中:具有自适应优化的可重构内核数据路径
  • 批准号:
    2105868
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了