Development of Artificial Intelligence (A.I.) Based Energy Management System (EMS) Software
基于人工智能(A.I.)的能源管理系统(EMS)软件的开发
基本信息
- 批准号:558296-2020
- 负责人:
- 金额:$ 5.46万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Applied Research and Development Grants - Level 2
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
TROES Corp. is a Canadian-based, advanced battery energy storage company that specializes in smart distributed energy storage solutions. Primarily, TROES develops, designs, manufactures and delivers high-performance, rigorously tested innovative Artificial Intelligence (AI) based IoT and cloud-based energy storage systems to industrial, commercial, and institutional sectors. TROES is quickly advancing in the industry with the development of a cloud-based Energy Management System (EMS) software that is successfully running live with various useful energy monitoring features and functions. However, given that accurate forecasting of electricity demand is critical to decision-makers in order to effectively manage energy systems, continued research on the integration of AI is required. The collaborative project with Lambton College will focus on developing a complete Artificial Intelligence (AI) based Energy Management System (EMS) software for Battery Energy Storage System (BESS). This software will be able to remotely monitor multiple battery systems, read all information and store information in cloud-based servers, and forecast load to then make the decision on how to charge or discharge the battery system ensuring the highest economic profit for end-users. This will be accomplished by investigating the implementation of electricity demand forecast solutions and utilizing the collected data from monitoring to improve the system State of Charge (SOC) estimate method. This is a recognized problem in the industry and therefore, by increasing the accuracy of SOC, the system can avoid over-usage of battery and maintain the battery life cycle for a longer period of time. Overall, the goal is to provide clients with increased performance on the battery energy storage systems as well as to remotely monitor and troubleshoot TROES battery system in various countries. With increased revenue by 30% it is estimated that an additional five full-time employment positions over three years will be created. As well, this will have a lasting positive impact on the environment as TROES batteries can be efficiently charged by grid power or by renewable energy sources, which, in turn, would reduce carbon dioxide emissions.
TROES Corp.是一家总部位于哥伦比亚的先进电池储能公司,专门从事智能分布式储能解决方案。TROES主要开发,设计,制造和提供高性能,经过严格测试的创新人工智能(AI)物联网和基于云的能源存储系统,用于工业,商业和机构部门。TROES在行业中迅速发展,开发了基于云的能源管理系统(EMS)软件,该软件成功运行,具有各种有用的能源监测功能和功能。然而,鉴于准确预测电力需求对于决策者有效管理能源系统至关重要,因此需要继续研究人工智能的整合。与兰顿学院的合作项目将专注于为电池储能系统(BESS)开发一个完整的基于人工智能(AI)的能源管理系统(EMS)软件。该软件将能够远程监控多个电池系统,读取所有信息并将信息存储在基于云的服务器中,并预测负载,然后决定如何为电池系统充电或放电,以确保最终用户的最高经济利润。这将通过调查电力需求预测解决方案的实施情况和利用监测收集的数据来改善系统荷电状态(SOC)估计方法来实现。这是业界公认的问题,因此,通过提高SOC的准确性,系统可以避免电池的过度使用,并在更长的时间内保持电池的寿命周期。总的来说,我们的目标是为客户提供更高的电池储能系统性能,以及远程监控和故障排除各个国家的TROES电池系统。随着收入增加30%,预计将在三年内创造额外的五个全职就业岗位。此外,这将对环境产生持久的积极影响,因为TROES电池可以通过电网或可再生能源有效充电,从而减少二氧化碳排放。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sheikhzadeh, Mehdi其他文献
Sheikhzadeh, Mehdi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sheikhzadeh, Mehdi', 18)}}的其他基金
Optimization and Scale-Up of Graphene Oxide (GO) Ink Production Process
氧化石墨烯 (GO) 油墨生产工艺的优化和放大
- 批准号:
CCARD-2022-00637 - 财政年份:2022
- 资助金额:
$ 5.46万 - 项目类别:
CCI Applied Research and Development Grants
Lambton Circular Economy Innovation Platform (LCEIP)
兰姆顿循环经济创新平台(LCEIP)
- 批准号:
CCMOB-2021-00054 - 财政年份:2022
- 资助金额:
$ 5.46万 - 项目类别:
CCI Mobilize Grants
Regeneration of Phosphorous Saturated Activated Alumina
磷饱和活性氧化铝的再生
- 批准号:
CCARD-2022-00214 - 财政年份:2022
- 资助金额:
$ 5.46万 - 项目类别:
CCI Applied Research and Development Grants
Canadian Materials Circular Economy Syndicate (CMCES)
加拿大材料循环经济联盟 (CMCES)
- 批准号:
CCB21-2021-00265 - 财政年份:2022
- 资助金额:
$ 5.46万 - 项目类别:
Applied Research and Technology Partnership Grants
Optimization and Scale Up of Origin Materials' Process to Produce Terephthalic acid, 2,5-Furandicarboxylic Acid and Hydrothermal Carbon
对苯二甲酸、2,5-呋喃二甲酸和热液炭原料生产工艺优化及放大
- 批准号:
CCARD-2022-00010 - 财政年份:2022
- 资助金额:
$ 5.46万 - 项目类别:
CCI Applied Research and Development Grants
Determination of Pea Processing Co-Products as a Feedstock for Conversion to Prebiotic Ingredients
测定豌豆加工副产品作为转化为益生元成分的原料
- 批准号:
CCARD-2022-00325 - 财政年份:2022
- 资助金额:
$ 5.46万 - 项目类别:
CCI Applied Research and Development Grants
Development of Innovative Test Bed Fixture in Measuring Air Cathode Membrane Film Thickness
开发测量空气阴极膜膜厚度的创新测试台夹具
- 批准号:
CCARD-2022-00689 - 财政年份:2022
- 资助金额:
$ 5.46万 - 项目类别:
CCI Applied Research and Development Grants
Electrical Energy Storage Research Platform
电能存储研究平台
- 批准号:
CCB21-2021-00040 - 财政年份:2022
- 资助金额:
$ 5.46万 - 项目类别:
Applied Research and Technology Partnership Grants
Optimization and Implementation of an Innovative Biologix Microbe Consortium for Bioremediation of Municipal Wastewater
用于城市废水生物修复的创新 Biologix 微生物联盟的优化和实施
- 批准号:
CCARD-2022-00227 - 财政年份:2022
- 资助金额:
$ 5.46万 - 项目类别:
CCI Applied Research and Development Grants
User Stickiness Improvements in Product-Led Growth through Recommender Systems
通过推荐系统提高产品主导型增长的用户粘性
- 批准号:
CCARD-2022-00423 - 财政年份:2022
- 资助金额:
$ 5.46万 - 项目类别:
CCI Applied Research and Development Grants
相似海外基金
Enabling The Development And Application Of Artificial Intelligence In The NHS
推动人工智能在 NHS 中的开发和应用
- 批准号:
MR/Y011651/1 - 财政年份:2024
- 资助金额:
$ 5.46万 - 项目类别:
Fellowship
Development of next generation monitoring system for pediatric ventricular assist devices by artificial intelligence
利用人工智能开发下一代儿科心室辅助装置监测系统
- 批准号:
23K11892 - 财政年份:2023
- 资助金额:
$ 5.46万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Monitoring and Evaluation of Sustainable Development Goals using Earth Observation and Artificial Intelligence in Rural Africa
利用地球观测和人工智能在非洲农村监测和评估可持续发展目标
- 批准号:
2830853 - 财政年份:2023
- 资助金额:
$ 5.46万 - 项目类别:
Studentship
PFI–TT: Development of an Explainable and Robust Detector of Forged Multimedia and Cyber Threats using Artificial intelligence
PFI™TT:使用人工智能开发可解释且强大的伪造多媒体和网络威胁检测器
- 批准号:
2329858 - 财政年份:2023
- 资助金额:
$ 5.46万 - 项目类别:
Continuing Grant
SBIR Phase I: Development of novel artificial intelligence (AI)-enabled, non-invasive, heart attack diagnostics
SBIR 第一阶段:开发新型人工智能 (AI) 支持的非侵入性心脏病诊断
- 批准号:
2208248 - 财政年份:2023
- 资助金额:
$ 5.46万 - 项目类别:
Standard Grant
Customizable Artificial Intelligence for the Biomedical Masses: Development of a User-Friendly Automated Machine Learning Platform for Biology Image Analysis.
面向生物医学大众的可定制人工智能:开发用于生物图像分析的用户友好的自动化机器学习平台。
- 批准号:
10699828 - 财政年份:2023
- 资助金额:
$ 5.46万 - 项目类别:
PFI–TT: Development of an Explainable and Robust Detector of Forged Multimedia and Cyber Threats using Artificial intelligence
PFI™TT:使用人工智能开发可解释且强大的伪造多媒体和网络威胁检测器
- 批准号:
2409577 - 财政年份:2023
- 资助金额:
$ 5.46万 - 项目类别:
Continuing Grant
I-Corps: A Framework for Streamlining the Development and Deployment of Generative Artificial Intelligence (AI) Models on Enterprise Data
I-Corps:简化企业数据生成人工智能 (AI) 模型的开发和部署的框架
- 批准号:
2335828 - 财政年份:2023
- 资助金额:
$ 5.46万 - 项目类别:
Standard Grant
Collaborative Research: FW-HTF-RL: Understanding the Ethics, Development, Design, and Integration of Interactive Artificial Intelligence Teammates in Future Mental Health Work
合作研究:FW-HTF-RL:了解未来心理健康工作中交互式人工智能队友的伦理、开发、设计和整合
- 批准号:
2326146 - 财政年份:2023
- 资助金额:
$ 5.46万 - 项目类别:
Standard Grant
Development, multi-ancestry international validation, algorithmic audit, and prospective silent trial evaluation of PRISM - A globally accessible, patient-oriented artificial intelligence-based model to predict the presence of clinically significant prost
PRISM 的开发、多祖先国际验证、算法审核和前瞻性静默试验评估 - 一种全球可访问、面向患者的基于人工智能的模型,用于预测具有临床意义的前列腺的存在
- 批准号:
479908 - 财政年份:2023
- 资助金额:
$ 5.46万 - 项目类别:
Operating Grants