High toughness bioresorbable ceramics for bone regeneration
用于骨再生的高韧性生物可吸收陶瓷
基本信息
- 批准号:RGPIN-2019-04340
- 负责人:
- 金额:$ 2.82万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
High toughness materials are on the forefront of materials science due to their immense number of applications ranging from civil engineer to bone reconstructions in dental and orthopedic surgery. However, bioceramics available for bone regeneration are either too brittle, or do not resorb and to be replaced by living bone in vivo upon implantation, which is critical for optimal bone regeneration. Natural biominerals, such as seashells and bone, are much tougher and stronger than most bioceramics. The main reason for these unique properties is, first, the hierarchal organization of their ultrastructure at different levels, namely the crystal organization, and second, the incorporation of structural proteins that increase fracture resistance. Dr Tamimi has discovered that certain calcium phosphate bone ceramics such as dicalcium phosphate anhydrous (DCP), though they are relatively brittle, they have optimal bioresorption and bone regeneration properties. The overall long -term goal of this research program is to develop new synthetic materials able to replace bone derived biomaterials for bone regeneration. In this context the short term goal of the research program for the next 5 years is to create high toughness bioceramics, made of bioresorbable dicalcium phosphates, using strategies inspired by natural biominerals in two main aims: Aim 1) Ultrastructural organization in bioceramics The formation of natural biominerals is regulated by specific biomolecules that control crystal nucleation, growth, morphology, organization and even function. These functional biomolecules are homochiral composed exclusively L-enantiomers of amino acids. Accordingly, in this aim we will study the previously unexplored option of using chiraly pure crystal growth inhibitors to control crystal growth at the nanoscale level to fabricate bioceramics with organized ultrastructure and high toughness. Aim 2) Proteins reinforcement of bioceramics Bone proteins serve a crucial role in organizing and reinforcing bone mineral structure, and regulating its interactions with the surrounding cells. In my published work, I showed that collagen can improve the biological performance of brushite bioceramics, and in my preliminary unpublished work, I discovered that noncollagenous bone proteins could be used to regulate collagen mineralization in vitro and increase osseointegration of brushite bioceramics in vivo. Building on these findings, this aim will focus on investigating how to improve the mechanical and biological properties of calcium phosphate bioceramics by fabricating them using bone proteins. Novelty and expected significance: This research program will trigger significant advancements in the field of biomineralization by unraveling the effect of enantiomeric molecules and bone proteins on bioceramic, and deliver a new generation of high toughness ceramic materials with a wide range of applications ranging bone regeneration to even construction and civil engineering.
高韧性材料是材料科学的前沿,因为它们的应用范围从土木工程到牙科和整形外科的骨重建。然而,可用于骨再生的生物陶瓷要么太脆,要么不能再吸收,并且在植入后在体内被活骨替代,这对于最佳骨再生至关重要。天然生物矿物,如贝壳和骨头,比大多数生物陶瓷更坚韧和坚固。这些独特性质的主要原因是,第一,它们的超微结构在不同水平上的层次组织,即晶体组织,第二,增加抗断裂性的结构蛋白的掺入。Tamimi博士发现某些磷酸钙骨陶瓷,如无水磷酸二钙(DCP),虽然它们相对较脆,但它们具有最佳的生物吸收和骨再生特性。 本研究计划的总体长期目标是开发能够替代骨源性生物材料用于骨再生的新型合成材料。在此背景下,未来5年研究计划的短期目标是利用受天然生物矿物启发的策略,制造由生物可吸收磷酸二钙制成的高韧性生物陶瓷,主要目标有两个:目标1)生物陶瓷中的超微结构组织天然生物矿物的形成受到控制晶体成核、生长、形态、组织甚至功能的特定生物分子的调节。这些功能性生物分子是纯手性的,仅由氨基酸的L-对映体组成。因此,在这个目标中,我们将研究以前未探索的选择,使用手性纯晶体生长抑制剂,以控制晶体生长在纳米级水平,制造生物陶瓷组织的超微结构和高韧性。目的2)生物陶瓷的蛋白质强化骨蛋白在组织和强化骨矿物质结构以及调节其与周围细胞的相互作用中起着至关重要的作用。在我已发表的工作中,我表明胶原蛋白可以改善透钙磷石生物陶瓷的生物学性能,在我未发表的初步工作中,我发现非胶原骨蛋白可用于调节体外胶原矿化和增加透钙磷石生物陶瓷的体内骨整合。在这些发现的基础上,该目标将集中于研究如何通过使用骨蛋白制造磷酸钙生物陶瓷来改善其机械和生物性能。新奇和预期意义:该研究计划将通过揭示对映体分子和骨蛋白对生物陶瓷的影响,在生物矿化领域取得重大进展,并提供新一代高韧性陶瓷材料,其应用范围广泛,从骨再生到建筑和土木工程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tamimi, Faleh其他文献
The impact of periodontal disease on the clinical outcomes of COVID-19: A systematic review and meta-analysis.
- DOI:
10.1186/s12903-023-03378-0 - 发表时间:
2023-09-09 - 期刊:
- 影响因子:2.9
- 作者:
Al-Maweri, Sadeq Ali;Alhajj, Mohammed Nasser;Halboub, Esam;Tamimi, Faleh;Salleh, Nosizana Mohd;Al-Ak'hali, Mohammed Sultan;Kassim, Saba;Abdulrab, Saleem;Anweigi, Lamyia;Mohammed, Marwan Mansoor Ali - 通讯作者:
Mohammed, Marwan Mansoor Ali
Composition and characteristics of trabecular bone in osteoporosis and osteoarthritis
- DOI:
10.1016/j.bone.2020.115558 - 发表时间:
2020-11-01 - 期刊:
- 影响因子:4.1
- 作者:
Tamimi, Iskandar;Cortes, Arthur Rodriguez Gonzalez;Tamimi, Faleh - 通讯作者:
Tamimi, Faleh
Regulation of enamel hardness by its crystallographic dimensions
- DOI:
10.1016/j.actbio.2012.06.002 - 发表时间:
2012-09-01 - 期刊:
- 影响因子:9.7
- 作者:
Eimar, Hazem;Ghadimi, Elnaz;Tamimi, Faleh - 通讯作者:
Tamimi, Faleh
The effect of autoclaving on the physical and biological properties of dicalcium phosphate dihydrate bioceramics: Brushite vs. monetite
- DOI:
10.1016/j.actbio.2012.04.025 - 发表时间:
2012-08-01 - 期刊:
- 影响因子:9.7
- 作者:
Tamimi, Faleh;Le Nihouannen, Damien;Barralet, Jake - 通讯作者:
Barralet, Jake
Osseointegration Pharmacology: A Systematic Mapping Using Artificial Intelligence
- DOI:
10.1016/j.actbio.2020.11.011 - 发表时间:
2021-01-01 - 期刊:
- 影响因子:9.7
- 作者:
Mahri, Mohammed;Shen, Nicole;Tamimi, Faleh - 通讯作者:
Tamimi, Faleh
Tamimi, Faleh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tamimi, Faleh', 18)}}的其他基金
High toughness bioresorbable ceramics for bone regeneration
用于骨再生的高韧性生物可吸收陶瓷
- 批准号:
RGPIN-2019-04340 - 财政年份:2020
- 资助金额:
$ 2.82万 - 项目类别:
Discovery Grants Program - Individual
High toughness bioresorbable ceramics for bone regeneration
用于骨再生的高韧性生物可吸收陶瓷
- 批准号:
RGPIN-2019-04340 - 财政年份:2019
- 资助金额:
$ 2.82万 - 项目类别:
Discovery Grants Program - Individual
Micro CT image processing for high contrast images
高对比度图像的显微 CT 图像处理
- 批准号:
523215-2018 - 财政年份:2018
- 资助金额:
$ 2.82万 - 项目类别:
Engage Grants Program
High toughness bioresorbable ceramics for bone regeneration
用于骨再生的高韧性生物可吸收陶瓷
- 批准号:
RGPIN-2018-05633 - 财政年份:2018
- 资助金额:
$ 2.82万 - 项目类别:
Discovery Grants Program - Individual
Biomimetic Synthetic Grafts for Bone Regeneration and Epithelial Healing
用于骨再生和上皮愈合的仿生合成移植物
- 批准号:
418617-2012 - 财政年份:2017
- 资助金额:
$ 2.82万 - 项目类别:
Discovery Grants Program - Individual
Biomimetic Synthetic Grafts for Bone Regeneration and Epithelial Healing
用于骨再生和上皮愈合的仿生合成移植物
- 批准号:
418617-2012 - 财政年份:2016
- 资助金额:
$ 2.82万 - 项目类别:
Discovery Grants Program - Individual
Laser-sintered dentures engineered for optimal performance
激光烧结假牙专为实现最佳性能而设计
- 批准号:
469834-2014 - 财政年份:2016
- 资助金额:
$ 2.82万 - 项目类别:
Collaborative Research and Development Grants
Accuracy of CAD/CAM Dental Models
CAD/CAM 牙科模型的准确性
- 批准号:
508094-2016 - 财政年份:2016
- 资助金额:
$ 2.82万 - 项目类别:
Engage Grants Program
Laser-sintered dentures engineered for optimal performance
激光烧结假牙专为实现最佳性能而设计
- 批准号:
469834-2014 - 财政年份:2015
- 资助金额:
$ 2.82万 - 项目类别:
Collaborative Research and Development Grants
Biomimetic Synthetic Grafts for Bone Regeneration and Epithelial Healing
用于骨再生和上皮愈合的仿生合成移植物
- 批准号:
418617-2012 - 财政年份:2015
- 资助金额:
$ 2.82万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
ICF Mechanical Property Optimisation of Magnesium Alloy Wires for Bioresorbable Vascular Scaffolds for the Treatment of Peripheral Arterial Disease
用于治疗外周动脉疾病的生物可吸收血管支架镁合金丝的 ICF 机械性能优化
- 批准号:
MR/Z503897/1 - 财政年份:2024
- 资助金额:
$ 2.82万 - 项目类别:
Research Grant
Opioid-Sparing Non-Surgical, Bioresorbable Nerve Stimulator for Pain Relief
节省阿片类药物的非手术生物可吸收神经刺激器,用于缓解疼痛
- 批准号:
10759642 - 财政年份:2023
- 资助金额:
$ 2.82万 - 项目类别:
Deciphering the relationship between bioresorbable magnesium alloy corrosion and the inflammatory microenvironment of the neotinima
解读生物可吸收镁合金腐蚀与新生细胞炎症微环境之间的关系
- 批准号:
10580115 - 财政年份:2023
- 资助金额:
$ 2.82万 - 项目类别:
Novel Bioresorbable Vascular Scaffolds with Uniform Biodegradation
具有均匀生物降解性的新型生物可吸收血管支架
- 批准号:
10930188 - 财政年份:2023
- 资助金额:
$ 2.82万 - 项目类别:
Bioresorbable Zinc Staples for Anastomoses in the Digestive Tract
用于消化道吻合术的生物可吸收锌钉
- 批准号:
10809825 - 财政年份:2022
- 资助金额:
$ 2.82万 - 项目类别:
I-Corps: Bioresorbable drug delivery patch for the localized treatment of Crohn's Disease
I-Corps:用于局部治疗克罗恩病的生物可吸收药物输送贴片
- 批准号:
2230953 - 财政年份:2022
- 资助金额:
$ 2.82万 - 项目类别:
Standard Grant
Bioresorbable Zinc Staples for Anastomoses in the Digestive Tract
用于消化道吻合术的生物可吸收锌钉
- 批准号:
10372304 - 财政年份:2022
- 资助金额:
$ 2.82万 - 项目类别:
Bioresorbable Zinc Staples for Anastomoses in the Digestive Tract
用于消化道吻合术的生物可吸收锌钉
- 批准号:
10560639 - 财政年份:2022
- 资助金额:
$ 2.82万 - 项目类别:
PERCUTANEOUS TREATMENT OF PERIPHERAL ARTERIAL OCCLUSIVE DISEASE WITH IMPLANTATION OF MULTIPLE, BALLOON-EXPANDABLE, DRUG-ELUTING BIORESORBABLE SCAFFOLDS (the Efemoral Vascular Scaffold System)
通过植入多个可扩张球囊、药物洗脱生物可吸收支架(股动脉血管支架系统)经皮治疗外周动脉闭塞性疾病
- 批准号:
10706525 - 财政年份:2022
- 资助金额:
$ 2.82万 - 项目类别:
3D printed bioresorbable sleeve device for esophageal atresia repair
用于食管闭锁修复的3D打印生物可吸收套筒装置
- 批准号:
10574363 - 财政年份:2022
- 资助金额:
$ 2.82万 - 项目类别: