Word Segmentation Across Two Languages Via Statistical Learning
通过统计学习进行两种语言的分词
基本信息
- 批准号:RGPIN-2019-06836
- 负责人:
- 金额:$ 1.21万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Statistical learning refers to the ability to track regular patterns in sensory input from ambient environments. Given its regularities and hierarchical structures, language is essentially a pattern-based system and therefore researchers have argued that statistical learning is fundamental to language acquisition. Indeed, young infants and adults can find words in artificial languages by tracking syllable co-occurrence probabilities and extracting words on that basis. However, prior studies have mainly focused on whether learners can statistically segment words from a single language; whether learners can segment words from two artificial languages remains largely unknown. Given the global prevalence of bilingualism, it is necessary to dual-input segmentation. Some studies have demonstrated that learners succeed in segmenting two overlapping artificial languages when supported by strong speaker-specific contextual cues (i.e., each language paired with a different person). However, by nature, a single bilingual individual has to alternate between two distinct languages, sometimes even in one conversation (i.e., code-switching). It is therefore important to explore whether phonetic contextual cues in a single individual's speech can facilitate adult segmentation of two artificial languages. Therefore, we will examine adult and infant learners to answer three questions: (i) Can learners make use of phonetic cues within a single individual's speech to segment words successfully from two artificial languages?; 2) Do bilinguals outperform monolinguals?; and 3) Do specific factors, such as cognitive ability or bilingual experience, underlie any potential bilingual advantage in word segmentation across two languages? In our first group of studies, we examine if adult learners generally could make use of French and English phonetic cues to segment words from two overlapping artificial languages. Pilot data indicated limitations based on certain phonemes and a simultaneous bilingual advantage. We therefore propose to test simultaneous multilinguals, use more salient phoneme differences, and use non-native phonetic cues across a series of experiments to fully explore adults' flexibility in processing information in new environments and their sensitivity to subtle cues that mark the changes of language inputs. Further, we will explore if adults' cognitive abilities are related to learners' segmentation performance. In the second set of studies, we will test infants of 9, 11, and 13 months on the same French-accented versus English-accented artificial language stimuli in a dual input segmentation task adapted for infants. This developmental approach will test if any bilingual advantages emerge in infancy. Further, we will again test cognitive skills using a executive functioning task to explore any relationship between segmentation and cognitive ability.
统计学习是指跟踪来自周围环境的感官输入中的规则模式的能力。鉴于语言的层次结构,语言本质上是一个基于模式的系统,因此研究人员认为统计学习是语言习得的基础。事实上,婴幼儿和成人可以通过跟踪音节同现概率并在此基础上提取单词来找到人工语言中的单词。然而,以前的研究主要集中在学习者是否可以从一种语言中统计分割单词,学习者是否可以从两种人工语言中分割单词在很大程度上仍然未知。鉴于双语现象在全球的普遍存在,有必要进行双输入分割。一些研究已经证明,当由强的说话者特定的上下文线索(即,每种语言与不同的人配对)。然而,从本质上讲,一个双语个体必须在两种不同的语言之间交替,有时甚至在一次对话中(即,语码转换)。因此,重要的是要探讨是否语音上下文线索在一个人的讲话,可以促进成人分割的两种人工语言。因此,我们将研究成人和婴儿学习者回答三个问题:(i)学习者能否利用单个人的语音中的语音线索成功地从两种人工语言中分割单词?2)双语者比单语者表现好吗?3)在两种语言的分词中,是否有特定的因素,如认知能力或双语经验,是双语优势的基础?在我们的第一组研究中,我们研究了成人学习者是否可以利用法语和英语的语音线索来从两种重叠的人工语言中分割单词。试点数据表明,基于某些音素的限制和同时双语的优势。因此,我们建议测试同时使用多种语言,使用更显着的音素差异,并在一系列实验中使用非母语语音线索,以充分探索成年人在新环境中处理信息的灵活性和他们对标记语言输入变化的微妙线索的敏感性。此外,我们将探讨成人的认知能力是否与学习者的分割性能有关。在第二组研究中,我们将测试9,11和13个月的婴儿在相同的法语口音与英语口音的人工语言刺激在一个双输入分割任务适合婴儿。这种发展的方法将测试是否有任何双语优势出现在婴儿期。此外,我们将再次使用执行功能任务测试认知技能,以探索分割和认知能力之间的任何关系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fennell, Christopher其他文献
Weighting of vowel cues explains patterns of word-object associative learning
- DOI:
10.1111/j.1467-7687.2009.00814.x - 发表时间:
2009-09-01 - 期刊:
- 影响因子:3.7
- 作者:
Curtin, Suzanne;Fennell, Christopher;Escudero, Paola - 通讯作者:
Escudero, Paola
You sound like Mommy: Bilingual and monolingual infants learn words best from speakers typical of their language environments
- DOI:
10.1177/0165025414530631 - 发表时间:
2014-07-01 - 期刊:
- 影响因子:3.7
- 作者:
Fennell, Christopher;Byers-Heinlein, Krista - 通讯作者:
Byers-Heinlein, Krista
Fennell, Christopher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fennell, Christopher', 18)}}的其他基金
Word Segmentation Across Two Languages Via Statistical Learning
通过统计学习进行两种语言的分词
- 批准号:
RGPIN-2019-06836 - 财政年份:2022
- 资助金额:
$ 1.21万 - 项目类别:
Discovery Grants Program - Individual
Word Segmentation Across Two Languages Via Statistical Learning
通过统计学习进行两种语言的分词
- 批准号:
RGPIN-2019-06836 - 财政年份:2020
- 资助金额:
$ 1.21万 - 项目类别:
Discovery Grants Program - Individual
Word Segmentation Across Two Languages Via Statistical Learning
通过统计学习进行两种语言的分词
- 批准号:
RGPIN-2019-06836 - 财政年份:2019
- 资助金额:
$ 1.21万 - 项目类别:
Discovery Grants Program - Individual
Attentional processes in infant bilinguals
双语婴儿的注意力过程
- 批准号:
RGPIN-2014-04590 - 财政年份:2018
- 资助金额:
$ 1.21万 - 项目类别:
Discovery Grants Program - Individual
Attentional processes in infant bilinguals
双语婴儿的注意力过程
- 批准号:
RGPIN-2014-04590 - 财政年份:2017
- 资助金额:
$ 1.21万 - 项目类别:
Discovery Grants Program - Individual
Attentional processes in infant bilinguals
双语婴儿的注意力过程
- 批准号:
RGPIN-2014-04590 - 财政年份:2016
- 资助金额:
$ 1.21万 - 项目类别:
Discovery Grants Program - Individual
On-line and implicit measurements of language and cognitive processing in children
儿童语言和认知处理的在线和隐式测量
- 批准号:
RTI-2016-00479 - 财政年份:2015
- 资助金额:
$ 1.21万 - 项目类别:
Research Tools and Instruments
Attentional processes in infant bilinguals
双语婴儿的注意力过程
- 批准号:
RGPIN-2014-04590 - 财政年份:2015
- 资助金额:
$ 1.21万 - 项目类别:
Discovery Grants Program - Individual
Attentional processes in infant bilinguals
双语婴儿的注意力过程
- 批准号:
RGPIN-2014-04590 - 财政年份:2014
- 资助金额:
$ 1.21万 - 项目类别:
Discovery Grants Program - Individual
Bilingual infants' acquisition and perception of phonemes
双语婴儿对音素的习得和感知
- 批准号:
341501-2008 - 财政年份:2012
- 资助金额:
$ 1.21万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 1.21万 - 项目类别:
Research Grant
SBIR Phase II: High-Resolution Image Segmentation for Natural Resource Management
SBIR 第二阶段:用于自然资源管理的高分辨率图像分割
- 批准号:
2233680 - 财政年份:2023
- 资助金额:
$ 1.21万 - 项目类别:
Cooperative Agreement
Automatic Segmentation in Cervical High-Dose Rate Brachytherapy
宫颈高剂量率近距离放射治疗中的自动分割
- 批准号:
495278 - 财政年份:2023
- 资助金额:
$ 1.21万 - 项目类别:
Multi-Resolution Curriculum Learning Guided Convolutional Neural Networks for Automatic Segmentation of iPS Cell Colonies
多分辨率课程学习引导卷积神经网络自动分割 iPS 细胞集落
- 批准号:
23K11170 - 财政年份:2023
- 资助金额:
$ 1.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Individual differences in temporal predictions in speech: word segmentation and conversational turn-taking
语音时间预测的个体差异:分词和会话轮流
- 批准号:
2863885 - 财政年份:2023
- 资助金额:
$ 1.21万 - 项目类别:
Studentship
FY 2023 SBIR TOPIC 402 PHASE II. ENHANCE THE PERFORMANCE OF THE AI FOR LYMPH NODE DETECTION, SEGMENTATION AND MEASUREMENTS AND DEVELOP ADDITIONAL AI MODELS FOR MALIGNANCY CLASSIFICATION LEVERAGING MU
2023 财年 SBIR 主题 402 第二阶段。
- 批准号:
10928777 - 财政年份:2023
- 资助金额:
$ 1.21万 - 项目类别:
伴侶動物のCT画像における人工知能を用いたsegmentation手法の開発
伴侣动物CT图像人工智能分割方法的开发
- 批准号:
23K14074 - 财政年份:2023
- 资助金额:
$ 1.21万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Elucidating the Role of ON and OFF Visual Pathways in Object Segmentation for Escape Behavior
阐明 ON 和 OFF 视觉通路在逃逸行为对象分割中的作用
- 批准号:
2212750 - 财政年份:2023
- 资助金额:
$ 1.21万 - 项目类别:
Standard Grant
FastPlex: A Fast Deep Learning Segmentation Method for Accurate Choroid Plexus Morphometry
FastPlex:一种用于精确脉络丛形态测量的快速深度学习分割方法
- 批准号:
10734956 - 财政年份:2023
- 资助金额:
$ 1.21万 - 项目类别:
CDS&E: Detection, Instance Segmentation, and Classification for Astronomical Surveys with Deep Learning (DeepDISC)
CDS
- 批准号:
2308174 - 财政年份:2023
- 资助金额:
$ 1.21万 - 项目类别:
Standard Grant