Modular injectable scaffolds for cell therapy and 3D bioprinting
用于细胞治疗和 3D 生物打印的模块化可注射支架
基本信息
- 批准号:RGPIN-2020-06684
- 负责人:
- 金额:$ 4.01万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The present research program aims to develop biomaterials scaffolds as engineering tools to improve the efficacy of cell therapy. Cell therapy consists in the transplantation of cells into patients and can be used to treat many diseases or repair tissues. However injected cells dye rapidly or are flushed from the tissue. Cell encapsulation in hydrogel scaffolds has the potential to improve cell therapy outcomes by enhancing cell viability and retention at the delivery site, but ideal scaffold are still missing. Moreover, the scaffold parameters that influence the survival and ability of cells to migrate towards the targeted tissue are still poorly understood. In the recent years, the candidate has been developing biodegradable in situ gelling hydrogels with enhanced mechanical properties and excellent cytocompatibility. Cells can be mixed to the pre-hydrogel solution when still liquid at room temperature and injected by needle or catheter. A cohesive gel rapidly form in vivo. The present project aims to further improve these injectable cell carriers, namely by improving cell microenvironment, facilitating oxygen diffusion to the cells and increasing their adhesion to the target tissues. The main approaches will consist in 1) the incorporation of extracellular matrix compounds into hydrogels to better reproduce normal cell-tissue interactions 2) the development of void-forming (macroporous) scaffolds using rapidly biodegradable microspheres, and 3) the fabrication of cell-carriers in the form of microspheres that can self-assemble in vivo. We hypothesize that compared to encapsulation in large hydrogel volumes, encapsulation in microspheres will improve oxygen diffusion to the cells, facilitate cell escape and eventually promote formation of blood vessel network that will provide oxygen and nutrients to the cells. We will also optimize the microencapsulation process to allow endothelial cells adhesion on the surface and thus accelerate the formation of a perfusable vascular network. In addition, we will optimize these injectable hydrogels as bioinks for 3D bioprinting. This additive manufacturing process allows to form tissue-like structures with controlled heterogeneity and personalized geometry, which can be used as 3D in vitro models, or as implantable scaffolds. However only a few bioinks are available and most of them are based on the non-biodegradable alginate. In this project, we will propose new bioinks based on chitosan- methacrylated gelatin interpenetrating networks. These new injectable modular cell carriers will offer many opportunities as tools for cell therapy and formation of 3D models and will bring significant knowledge on the factors influencing the success of cell carrier for cell therapy. A final benefit is the training of high-quality, highly qualified personnel (HQP) in this important field at the frontier between biomaterials science, rheology, mechanical engineering and biology.
目前的研究项目旨在开发生物材料支架作为工程工具,以提高细胞治疗的疗效。细胞疗法包括将细胞移植到病人体内,可用于治疗许多疾病或修复组织。然而,注射的细胞迅速染色或从组织中冲洗出来。水凝胶支架中的细胞包封有可能通过增强细胞活力和在递送部位的保留来改善细胞治疗结果,但理想的支架仍然缺乏。此外,影响细胞向目标组织迁移的存活和能力的支架参数仍然知之甚少。近年来,候选材料一直在开发具有增强机械性能和优异细胞相容性的可生物降解原位凝胶。细胞可以混合到预水凝胶溶液中,在室温下仍为液体,并通过针或导管注射。有凝聚力的凝胶在体内迅速形成。本项目旨在进一步改善这些可注射细胞载体,即改善细胞微环境,促进氧向细胞扩散,增加其与靶组织的粘附。主要的方法将包括:1)将细胞外基质化合物结合到水凝胶中,以更好地再现正常的细胞-组织相互作用;2)利用快速可生物降解的微球开发成孔(大孔)支架;3)制造可在体内自组装的微球形式的细胞载体。我们假设,与大体积水凝胶包封相比,微球包封将改善氧气向细胞的扩散,促进细胞逃逸,并最终促进血管网络的形成,从而为细胞提供氧气和营养。我们还将优化微胶囊化过程,使内皮细胞粘附在表面,从而加速可灌注血管网络的形成。此外,我们将优化这些可注射水凝胶作为3D生物打印的生物墨水。这种增材制造工艺允许形成具有控制异质性和个性化几何形状的类组织结构,可用作体外3D模型或可植入支架。然而,只有少数生物墨水可用,而且大多数是基于不可生物降解的海藻酸盐。在本项目中,我们将提出基于壳聚糖-甲基丙烯酸明胶互穿网络的新型生物墨水。这些新的可注射的模块化细胞载体将为细胞治疗和3D模型的形成提供许多机会,并将为细胞治疗中影响细胞载体成功的因素带来重要的知识。最后一个好处是在生物材料科学、流变学、机械工程和生物学这一重要前沿领域培养高质量、高素质的人才。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lerouge, Sophie其他文献
A new radiopaque embolizing agent for the treatment of endoleaks after endovascular repair: Influence of contrast agent on chitosan thermogel properties
- DOI:
10.1002/jbm.b.32828 - 发表时间:
2013-01-01 - 期刊:
- 影响因子:3.4
- 作者:
Coutu, Jean-Michel;Fatimi, Ahmed;Lerouge, Sophie - 通讯作者:
Lerouge, Sophie
Injectable Chitosan Hydrogels with Enhanced Mechanical Properties for Nucleus Pulposus Regeneration
- DOI:
10.1089/ten.tea.2018.0170 - 发表时间:
2018-11-09 - 期刊:
- 影响因子:4.1
- 作者:
Alinejad, Yasaman;Adoungotchodo, Atma;Lerouge, Sophie - 通讯作者:
Lerouge, Sophie
Injectable, strong and bioadhesive catechol-chitosan hydrogels physically crosslinked using sodium bicarbonate
- DOI:
10.1016/j.msec.2020.111529 - 发表时间:
2021-01-01 - 期刊:
- 影响因子:7.9
- 作者:
Guyot, Capucine;Cerruti, Marta;Lerouge, Sophie - 通讯作者:
Lerouge, Sophie
Chondroitin Sulfate and Epidermal Growth Factor Immobilization after Plasma Polymerization: A Versatile Anti-Apoptotic Coating to Promote Healing Around Stent Grafts
- DOI:
10.1002/mabi.201100447 - 发表时间:
2012-06-01 - 期刊:
- 影响因子:4.6
- 作者:
Charbonneau, Cindy;Ruiz, Juan-Carlos;Lerouge, Sophie - 通讯作者:
Lerouge, Sophie
Assessment by transient elastography of the viscoelastic properties of blood during clotting
- DOI:
10.1016/j.ultrasmedbio.2006.06.008 - 发表时间:
2006-10-01 - 期刊:
- 影响因子:2.9
- 作者:
Gennisson, Jean-Luc;Lerouge, Sophie;Cloutier, Guy - 通讯作者:
Cloutier, Guy
Lerouge, Sophie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lerouge, Sophie', 18)}}的其他基金
Modular injectable scaffolds for cell therapy and 3D bioprinting
用于细胞治疗和 3D 生物打印的模块化可注射支架
- 批准号:
RGPIN-2020-06684 - 财政年份:2022
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Individual
Modular injectable scaffolds for cell therapy and 3D bioprinting
用于细胞治疗和 3D 生物打印的模块化可注射支架
- 批准号:
RGPIN-2020-06684 - 财政年份:2020
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Individual
Injectable thermosensitive hydrogels with enhanced mechanical properties for cell therapy
用于细胞治疗的具有增强机械性能的可注射热敏水凝胶
- 批准号:
RGPIN-2015-05169 - 财政年份:2019
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Individual
Endovascular implants and biomaterials
血管内植入物和生物材料
- 批准号:
1000229036-2012 - 财政年份:2018
- 资助金额:
$ 4.01万 - 项目类别:
Canada Research Chairs
Injectable thermosensitive hydrogels with enhanced mechanical properties for cell therapy
用于细胞治疗的具有增强机械性能的可注射热敏水凝胶
- 批准号:
RGPIN-2015-05169 - 财政年份:2018
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Individual
Injectable bioactive hydrogel for the regeneration of intervertebral disc
用于椎间盘再生的可注射生物活性水凝胶
- 批准号:
508365-2017 - 财政年份:2018
- 资助金额:
$ 4.01万 - 项目类别:
Collaborative Health Research Projects
Endovascular implants and biomaterials
血管内植入物和生物材料
- 批准号:
1000229036-2012 - 财政年份:2017
- 资助金额:
$ 4.01万 - 项目类别:
Canada Research Chairs
Injectable thermosensitive hydrogels with enhanced mechanical properties for cell therapy
用于细胞治疗的具有增强机械性能的可注射热敏水凝胶
- 批准号:
RGPIN-2015-05169 - 财政年份:2017
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Individual
Injectable bioactive hydrogel for the regeneration of intervertebral disc
用于椎间盘再生的可注射生物活性水凝胶
- 批准号:
508365-2017 - 财政年份:2017
- 资助金额:
$ 4.01万 - 项目类别:
Collaborative Health Research Projects
Injectable thermosensitive hydrogels with enhanced mechanical properties for cell therapy
用于细胞治疗的具有增强机械性能的可注射热敏水凝胶
- 批准号:
RGPIN-2015-05169 - 财政年份:2016
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Modular injectable scaffolds for cell therapy and 3D bioprinting
用于细胞治疗和 3D 生物打印的模块化可注射支架
- 批准号:
RGPIN-2020-06684 - 财政年份:2022
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Individual
Microengineering vascularized and innervated bone-like scaffolds as an alternative to autologous bone grafts
微工程血管化和神经支配的骨样支架作为自体骨移植的替代品
- 批准号:
10614543 - 财政年份:2021
- 资助金额:
$ 4.01万 - 项目类别:
Injectable Fibrous Scaffolds for Meniscal Repair
用于半月板修复的可注射纤维支架
- 批准号:
10670868 - 财政年份:2021
- 资助金额:
$ 4.01万 - 项目类别:
Injectable Fibrous Scaffolds for Meniscal Repair
用于半月板修复的可注射纤维支架
- 批准号:
10311622 - 财政年份:2021
- 资助金额:
$ 4.01万 - 项目类别:
Microengineering vascularized and innervated bone-like scaffolds as an alternative to autologous bone grafts
微工程血管化和神经支配的骨样支架作为自体骨移植的替代品
- 批准号:
10449968 - 财政年份:2021
- 资助金额:
$ 4.01万 - 项目类别:
Modular injectable scaffolds for cell therapy and 3D bioprinting
用于细胞治疗和 3D 生物打印的模块化可注射支架
- 批准号:
RGPIN-2020-06684 - 财政年份:2020
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Individual
Injectable and Moldable Composite Bone Scaffolds for Spinal Fusion
用于脊柱融合的可注射和可成型复合骨支架
- 批准号:
10089684 - 财政年份:2019
- 资助金额:
$ 4.01万 - 项目类别:
Injectable and Moldable Composite Bone Scaffolds for Spinal Fusion
用于脊柱融合的可注射和可成型复合骨支架
- 批准号:
9908051 - 财政年份:2019
- 资助金额:
$ 4.01万 - 项目类别:
Injectable and Moldable Composite Bone Scaffolds for Spinal Fusion
用于脊柱融合的可注射和可成型复合骨支架
- 批准号:
10364656 - 财政年份:2019
- 资助金额:
$ 4.01万 - 项目类别:
Injectable and Moldable Composite Bone Scaffolds for Spinal Fusion
用于脊柱融合的可注射和可成型复合骨支架
- 批准号:
10444098 - 财政年份:2019
- 资助金额:
$ 4.01万 - 项目类别: