Network-based Models for Scheduling under Uncertainty
不确定性下基于网络的调度模型
基本信息
- 批准号:RGPIN-2020-06054
- 负责人:
- 金额:$ 2.26万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In day-to-day services, scheduling problems often involve quantities that are unknown in advance. For example, when a medical clinic schedules an appointment for a patient, it is uncertain as to how long the appointment will take, or if previous appointments scheduled for that day will run longer than initially anticipated. Schedules that are overly optimistic and assume short patient visits may lead to undesired patient waiting times. In contrast, allowing too much flexibility on appointment lengths can result in idle physicians and a reduced number of patients seen daily at the clinic. Similar scenarios occur in a large array of other applications, such as when scheduling parcel deliveries, jobs in cloud services, rides in shared-economy apps, and service requests in call centers. With the advancement of data analytics, we can now exploit large amounts of data to accurately model this uncertainty. Machine learning and statistical methods have become increasingly more accessible, allowing practitioners to more easily derive accurate probability distributions or to construct sophisticated models to predict, e.g., patient appointment lengths. However, optimization models that leverage this information in order to design better schedules are notoriously difficult to solve. Such models combine complex uncertainty structure with a range of idiosyncratic constraints, severely limiting their applicability to practice and presenting novel theoretical and computational challenges. My proposal, motivated by these challenges, will develop novel optimization methodologies for scheduling under uncertain parameters. The focus of the research is on an alternative modeling perspective based on network encodings of the uncertainty. Specifically, networks are flexible data structures that can compactly represent large amounts of information, such as the set of future outcomes of an unknown variable. They can be used in conjunction with mathematical programming and state-of-the-art optimization techniques to derive better schedules more efficiently, providing new ways to bridge predictive and prescriptive analytics. This proposal focuses on scheduling challenges where network models present unique methodological benefits, such as in scenario-based approaches, integrated machine learning/optimization models, and stochastic dynamic programs. In particular, results will be evaluated using real datasets from collaborations with national and international organizations. The outcome is a series of computationally practical tools that decision makers can use in order to enhance scheduling services in healthcare, transportation, and logistics, to name a few. With this proposal and the training of high-qualified personnel, we aim to position Canada at the forefront of evidence-based management as driven by data, specifically by developing the next generation of analytical tools that extract the value of data through optimization and rigorous methodologies.
在日常服务中,调度问题通常涉及事先未知的数量。例如,当医疗诊所为患者安排预约时,不确定预约将花费多长时间,或者为该天安排的先前预约是否将比最初预期的时间更长。过于乐观的时间表和假设短期的病人访问可能会导致不希望的病人等待时间。相比之下,在预约时间上允许太多的灵活性可能会导致空闲的医生和每天在诊所就诊的患者数量减少。类似的场景也发生在大量其他应用程序中,例如在安排包裹交付、云服务中的作业、共享经济应用程序中的乘车以及呼叫中心中的服务请求时。随着数据分析的进步,我们现在可以利用大量数据来准确地建模这种不确定性。机器学习和统计方法变得越来越容易获得,使从业者能够更容易地获得准确的概率分布或构建复杂的模型来预测,例如,患者预约时间然而,利用这些信息来设计更好的时间表的优化模型是众所周知的难以解决的。这些模型将联合收割机复杂的不确定性结构与一系列特殊的约束条件相结合,严重限制了它们在实践中的适用性,并提出了新的理论和计算挑战。我的建议,这些挑战的动机,将开发新的优化方法调度不确定参数下。研究的重点是基于网络编码的不确定性的替代建模的角度。具体来说,网络是灵活的数据结构,可以复杂地表示大量信息,例如未知变量的未来结果集。它们可以与数学规划和最先进的优化技术结合使用,以更有效地获得更好的时间表,为预测性和规范性分析提供新的方法。该提案侧重于调度挑战,其中网络模型呈现出独特的方法优势,例如基于神经网络的方法,集成机器学习/优化模型和随机动态程序。特别是,将使用与国家和国际组织合作的真实的数据集对结果进行评价。其结果是一系列计算上实用的工具,决策者可以使用这些工具来增强医疗保健,运输和物流等方面的调度服务。通过这一提议和高素质人员的培训,我们的目标是将加拿大置于数据驱动的循证管理的前沿,特别是通过开发下一代分析工具,通过优化和严格的方法提取数据的价值。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cire, Andre其他文献
Cire, Andre的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cire, Andre', 18)}}的其他基金
Network-based Models for Scheduling under Uncertainty
不确定性下基于网络的调度模型
- 批准号:
RGPIN-2020-06054 - 财政年份:2022
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Network-based Models for Scheduling under Uncertainty
不确定性下基于网络的调度模型
- 批准号:
RGPIN-2020-06054 - 财政年份:2020
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Optimization with Decision Diagrams: Theory and Applications
使用决策图进行优化:理论与应用
- 批准号:
RGPIN-2015-04152 - 财政年份:2019
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Optimization with Decision Diagrams: Theory and Applications
使用决策图进行优化:理论与应用
- 批准号:
RGPIN-2015-04152 - 财政年份:2018
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Optimization with Decision Diagrams: Theory and Applications
使用决策图进行优化:理论与应用
- 批准号:
RGPIN-2015-04152 - 财政年份:2017
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Data Analytics for Ore Blending Schedules
矿石混合计划的数据分析
- 批准号:
517573-2017 - 财政年份:2017
- 资助金额:
$ 2.26万 - 项目类别:
Engage Grants Program
Optimization with Decision Diagrams: Theory and Applications
使用决策图进行优化:理论与应用
- 批准号:
RGPIN-2015-04152 - 财政年份:2016
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Optimization with Decision Diagrams: Theory and Applications
使用决策图进行优化:理论与应用
- 批准号:
RGPIN-2015-04152 - 财政年份:2015
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Incentive and governance schenism study of corporate green washing behavior in China: Based on an integiated view of econfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
- 批准号:W2433169
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
含Re、Ru先进镍基单晶高温合金中TCP相成核—生长机理的原位动态研究
- 批准号:52301178
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
NbZrTi基多主元合金中化学不均匀性对辐照行为的影响研究
- 批准号:12305290
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
眼表菌群影响糖尿病患者干眼发生的人群流行病学研究
- 批准号:82371110
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
镍基UNS N10003合金辐照位错环演化机制及其对力学性能的影响研究
- 批准号:12375280
- 批准年份:2023
- 资助金额:53.00 万元
- 项目类别:面上项目
CuAgSe基热电材料的结构特性与构效关系研究
- 批准号:22375214
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
A study on prototype flexible multifunctional graphene foam-based sensing grid (柔性多功能石墨烯泡沫传感网格原型研究)
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
基于大数据定量研究城市化对中国季节性流感传播的影响及其机理
- 批准号:82003509
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
EEG Based Global Network Models and Platform for Brain States Assessment
基于脑电图的大脑状态评估全球网络模型和平台
- 批准号:
DP240102329 - 财政年份:2024
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Projects
Development of data-driven multiple sound spot synthesis technology based on deep generative neural network models
基于深度生成神经网络模型的数据驱动多声点合成技术开发
- 批准号:
23K11177 - 财政年份:2023
- 资助金额:
$ 2.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
BoCP-Design: Developing network-based models to evaluate functional biodiversity responses to climate change and species invasions
BoCP-Design:开发基于网络的模型来评估功能性生物多样性对气候变化和物种入侵的反应
- 批准号:
2224915 - 财政年份:2023
- 资助金额:
$ 2.26万 - 项目类别:
Standard Grant
Multiscale, Multi-fidelity and Multiphysics Bayesian Neural Network (BNN) Machine Learning (ML) Surrogate Models for Modelling Design Based Accidents
用于基于事故建模设计的多尺度、多保真度和多物理场贝叶斯神经网络 (BNN) 机器学习 (ML) 替代模型
- 批准号:
2764855 - 财政年份:2022
- 资助金额:
$ 2.26万 - 项目类别:
Studentship
Sequence-based Machine Learning for Inference of Dynamic Cell State Gene Network Models
基于序列的机器学习用于动态细胞状态基因网络模型的推理
- 批准号:
10665735 - 财政年份:2022
- 资助金额:
$ 2.26万 - 项目类别:
Network-based Models for Scheduling under Uncertainty
不确定性下基于网络的调度模型
- 批准号:
RGPIN-2020-06054 - 财政年份:2022
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Model-based Analysis of Dynamic Networks using Continuous-time Network Models
职业:使用连续时间网络模型对动态网络进行基于模型的分析
- 批准号:
2318751 - 财政年份:2022
- 资助金额:
$ 2.26万 - 项目类别:
Continuing Grant
CAREER: Model-based Analysis of Dynamic Networks using Continuous-time Network Models
职业:使用连续时间网络模型对动态网络进行基于模型的分析
- 批准号:
2047955 - 财政年份:2021
- 资助金额:
$ 2.26万 - 项目类别:
Continuing Grant
PrEP Intervention Models for Young Black MSM: A Place-based Affiliation Network Approach
年轻黑人 MSM 的 PrEP 干预模型:基于地点的隶属网络方法
- 批准号:
10379383 - 财政年份:2021
- 资助金额:
$ 2.26万 - 项目类别:
PrEP Intervention Models for Young Black MSM: A Place-based Affiliation Network Approach
年轻黑人 MSM 的 PrEP 干预模型:基于地点的隶属网络方法
- 批准号:
10161165 - 财政年份:2021
- 资助金额:
$ 2.26万 - 项目类别: