Scalable semiconductor quantum technologies
可扩展的半导体量子技术
基本信息
- 批准号:RGPIN-2018-04375
- 负责人:
- 金额:$ 5.97万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The classical transistor enabled the first technological revolution in computing. The ultimate limits on information processing, however, are determined by quantum mechanics rather than classical physics. A new paradigm of quantum information science has emerged in recent decades that promises a second technological revolution - the quantum age'. The ability to efficiently simulate complex physical systems that obey quantum mechanics, for example, will enable untold new advances in medicine, energy, chemistry, materials engineering and many other fields. The key to unlock these advances is translating theoretical quantum circuits into real world devices, particularly with architectures that allow scaling to arbitrary size. Quantum information, however, is extremely fragile due to the process of decoherence. It remains a challenge to show that decoherence can be overcome in real devices, either by applying the theoretical tools of quantum error correction, or by exploiting topologically protected modes to store quantum states. The proposed research program uses two promising experimental platforms to test both strategies. The first strategy, using quantum error correction, is explored using spin qubits objects defined by the quantum states of an electron's spin. A single electron is confined in a small region of space called a quantum dot, and its spin can be manipulated with electromagnetic fields. We choose silicon as the host material because spin qubits can have very long coherence times in silicon, and quantum dots can be formed using CMOS-compatible fabrication methods, lending a great potential for scalability. We propose a novel network architecture for implementing a quantum error correction scheme with a very high tolerance for errors, called a surface code. The second strategy, topologically protected qubits, is explored in superconductor-semiconductor hybrid devices designed to realize special states known as Majorana fermions or parafermions. We will exploit a unique and scalable material system, based on InSb quantum wells, to engineer first demonstrations of manipulation and readout of topological qubits. A third thrust is on carbon nanotube (CNT) nano-mechanical resonators and explores their potential for measuring forces at the atomic scale. This builds on our demonstrated ability to measure sub-nanometer changes in the CNT vibration amplitude on microsecond timescales. We will apply this to detect the spin states of individual magnetic molecules grafted onto the CNT, which could serve as a basis for a new scanning probe technology.
经典晶体管引发了计算领域的第一次技术革命。然而,信息处理的最终限制是由量子力学而不是经典物理学决定的。近几十年来,量子信息科学的新范式出现,预示着第二次技术革命——量子时代。例如,有效模拟遵守量子力学的复杂物理系统的能力将使医学、能源、化学、材料工程和许多其他领域取得无数的新进展。解锁这些进步的关键是将理论量子电路转化为现实世界的设备,特别是允许缩放到任意尺寸的架构。然而,由于退相干过程,量子信息极其脆弱。证明可以通过应用量子纠错的理论工具或通过利用拓扑保护模式来存储量子态来克服实际设备中的退相干仍然是一个挑战。拟议的研究计划使用两个有前途的实验平台来测试这两种策略。第一种策略是使用量子纠错,使用由电子自旋的量子态定义的自旋量子位对象进行探索。单个电子被限制在称为量子点的小空间区域中,其自旋可以通过电磁场来操纵。我们选择硅作为主体材料,因为自旋量子位在硅中可以具有很长的相干时间,并且量子点可以使用 CMOS 兼容的制造方法形成,从而具有巨大的可扩展潜力。我们提出了一种新颖的网络架构,用于实现具有非常高的错误容忍度的量子纠错方案,称为表面码。第二种策略是拓扑保护的量子位,在超导-半导体混合器件中进行探索,旨在实现称为马约拉纳费米子或帕拉费米子的特殊状态。我们将利用基于 InSb 量子阱的独特且可扩展的材料系统,来设计拓扑量子位的操纵和读出的首次演示。第三个重点是碳纳米管(CNT)纳米机械谐振器,并探索它们在原子尺度上测量力的潜力。这是建立在我们已证明能够在微秒时间尺度上测量 CNT 振动幅度的亚纳米变化的能力的基础上的。我们将应用它来检测嫁接到碳纳米管上的单个磁性分子的自旋态,这可以作为新扫描探针技术的基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Baugh, Jonathan其他文献
Electron transport in InAs-InAlAs core-shell nanowires
- DOI:
10.1063/1.4788742 - 发表时间:
2013-01-28 - 期刊:
- 影响因子:4
- 作者:
Holloway, Gregory W.;Song, Yipu;Baugh, Jonathan - 通讯作者:
Baugh, Jonathan
Low temperature probe for dynamic nuclear polarization and multiple-pulse solid-state NMR
- DOI:
10.1016/j.jmr.2007.04.012 - 发表时间:
2007-08-01 - 期刊:
- 影响因子:2.2
- 作者:
Cho, HyungJoon;Baugh, Jonathan;Ramanathan, Chandrasekhar - 通讯作者:
Ramanathan, Chandrasekhar
Large nuclear overhauser fields detected in vertically coupled double quantum dots
- DOI:
10.1103/physrevlett.99.096804 - 发表时间:
2007-08-31 - 期刊:
- 影响因子:8.6
- 作者:
Baugh, Jonathan;Kitamura, Yosuke;Tarucha, Seigo - 通讯作者:
Tarucha, Seigo
Temperature-dependent electron mobility in InAs nanowires
- DOI:
10.1088/0957-4484/24/22/225202 - 发表时间:
2013-06-07 - 期刊:
- 影响因子:3.5
- 作者:
Gupta, Nupur;Song, Yipu;Baugh, Jonathan - 通讯作者:
Baugh, Jonathan
Network architecture for a topological quantum computer in silicon
- DOI:
10.1088/2058-9565/aaf3c4 - 发表时间:
2019-04-01 - 期刊:
- 影响因子:6.7
- 作者:
Buonacorsi, Brandon;Cai, Zhenyu;Baugh, Jonathan - 通讯作者:
Baugh, Jonathan
Baugh, Jonathan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Baugh, Jonathan', 18)}}的其他基金
Scalable semiconductor quantum technologies
可扩展的半导体量子技术
- 批准号:
RGPIN-2018-04375 - 财政年份:2021
- 资助金额:
$ 5.97万 - 项目类别:
Discovery Grants Program - Individual
Scalable semiconductor quantum technologies
可扩展的半导体量子技术
- 批准号:
RGPIN-2018-04375 - 财政年份:2020
- 资助金额:
$ 5.97万 - 项目类别:
Discovery Grants Program - Individual
Scalable semiconductor quantum technologies
可扩展的半导体量子技术
- 批准号:
RGPIN-2018-04375 - 财政年份:2019
- 资助金额:
$ 5.97万 - 项目类别:
Discovery Grants Program - Individual
Scalable semiconductor quantum technologies
可扩展的半导体量子技术
- 批准号:
RGPIN-2018-04375 - 财政年份:2018
- 资助金额:
$ 5.97万 - 项目类别:
Discovery Grants Program - Individual
Low Pressure Chemical Vapour Deposition Growth of Graphene for Electronic Component Applications**
用于电子元件应用的石墨烯低压化学气相沉积生长**
- 批准号:
537418-2018 - 财政年份:2018
- 资助金额:
$ 5.97万 - 项目类别:
Engage Grants Program
Electron and nuclear spins at the frontiers of nanotechnology and quantum information science
纳米技术和量子信息科学前沿的电子和核自旋
- 批准号:
355429-2013 - 财政年份:2017
- 资助金额:
$ 5.97万 - 项目类别:
Discovery Grants Program - Individual
Chemical vapour deposition and rapid thermal processing tool to support nanoelectronics research
支持纳米电子学研究的化学气相沉积和快速热处理工具
- 批准号:
RTI-2017-00152 - 财政年份:2016
- 资助金额:
$ 5.97万 - 项目类别:
Research Tools and Instruments
Electron and nuclear spins at the frontiers of nanotechnology and quantum information science
纳米技术和量子信息科学前沿的电子和核自旋
- 批准号:
355429-2013 - 财政年份:2016
- 资助金额:
$ 5.97万 - 项目类别:
Discovery Grants Program - Individual
Electron and nuclear spins at the frontiers of nanotechnology and quantum information science
纳米技术和量子信息科学前沿的电子和核自旋
- 批准号:
355429-2013 - 财政年份:2015
- 资助金额:
$ 5.97万 - 项目类别:
Discovery Grants Program - Individual
Electron and nuclear spins at the frontiers of nanotechnology and quantum information science
纳米技术和量子信息科学前沿的电子和核自旋
- 批准号:
355429-2013 - 财政年份:2014
- 资助金额:
$ 5.97万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Single-atom quantum phenomena in nanoscale semiconductor devices
纳米级半导体器件中的单原子量子现象
- 批准号:
EP/V048333/2 - 财政年份:2024
- 资助金额:
$ 5.97万 - 项目类别:
Research Grant
Scalable semiconductor quantum processor with flip chip bonding technology
采用倒装芯片接合技术的可扩展半导体量子处理器
- 批准号:
IM230100396 - 财政年份:2023
- 资助金额:
$ 5.97万 - 项目类别:
Mid-Career Industry Fellowships
Nanoscale quantum physics and quantum information processing with semiconductor quantum dots
纳米量子物理与半导体量子点的量子信息处理
- 批准号:
2891758 - 财政年份:2023
- 资助金额:
$ 5.97万 - 项目类别:
Studentship
NSF-NSERC: Building a two-qubit controlled phase gate using laterally coupled semiconductor quantum dots
NSF-NSERC:使用横向耦合半导体量子点构建两个量子位控制的相位门
- 批准号:
2317047 - 财政年份:2023
- 资助金额:
$ 5.97万 - 项目类别:
Standard Grant
Open fiber-based cavity for spectroscopix experiments in semiconductor quantum optics
用于半导体量子光学光谱实验的开放式光纤腔
- 批准号:
517518181 - 财政年份:2023
- 资助金额:
$ 5.97万 - 项目类别:
Major Research Instrumentation
Development of fundamental technologies for III-V semiconductor membrane photonic integrated circuits using quantum well intermixing
利用量子阱混合开发III-V族半导体膜光子集成电路基础技术
- 批准号:
23H00172 - 财政年份:2023
- 资助金额:
$ 5.97万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Quantum dot formation by electron beam irradiation and application to yellow semiconductor laser
电子束照射形成量子点及其在黄色半导体激光器中的应用
- 批准号:
23H01455 - 财政年份:2023
- 资助金额:
$ 5.97万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Creation of innovative quantum repeater technology for semiconductor spin qubits based on photon-spin quantum state conversion
创建基于光子自旋量子态转换的半导体自旋量子位创新量子中继器技术
- 批准号:
23H05458 - 财政年份:2023
- 资助金额:
$ 5.97万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
Semiconductor-based topological superconducting spintronics: Creation of next-generation quantum information infrastructure
基于半导体的拓扑超导自旋电子学:创建下一代量子信息基础设施
- 批准号:
23K17324 - 财政年份:2023
- 资助金额:
$ 5.97万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
Photophysics of Colloidal Semiconductor Nanoplatelets Relevant to Quantum Optics
与量子光学相关的胶体半导体纳米片的光物理学
- 批准号:
2304937 - 财政年份:2023
- 资助金额:
$ 5.97万 - 项目类别:
Standard Grant














{{item.name}}会员




