Action-theoretic formalization of actual causation and its applications
实际因果关系的行动理论形式化及其应用
基本信息
- 批准号:RGPIN-2022-03433
- 负责人:
- 金额:$ 1.82万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Research on actual causality involves finding in a given log the actions or events that caused an observed effect. Causality analysis plays a crucial role in automated reasoning and has numerous applications in practically every field, including computer science (e.g. for databases, program verification, explainable artificial intelligence, etc.), manufacturing and engineering, medicine and health science (e.g. for diagnostic purposes), and tort law (e.g. to assign responsibility and blame), to name a few. For instance, if an aircraft crashes, it is useful to analyze the actions captured by the flight-recorder and identify those that led to this disaster. Philosophers since the time of Aristotle have been grappling with this basic question of what actually caused an effect, but a proper definition that is general enough is yet to be proposed. It turns out that actual causality in general is extremely tricky to formulate. Current formal approaches to actual causation are based on Structural Equations Models (SEMs). Although very popular, these models have limited expressiveness and suffer from a variety of problems. This research program aims at overcoming some of the challenges involved in the formalization of actual causation. To this end, my students and I will develop a comprehensive theory of actual causation that is based on a formal theory of action and change, and investigate its potential applications. In the short term, I will pursue three main objectives. First, I will develop a definition of actual cause within discrete dynamical systems. I will ensure that my formalization can support non-linear scenarios, i.e. those where the observed events are only partially ordered, and model causation from both an objective perspective and from the perspective of individual agents. Secondly, I will study causality in hybrid dynamic domains where change can involve discrete event occurrences as well as can be a result of the flow of time and be dictated by some continuous function. Finally, I will investigate various applications of this theory. In particular, I will apply causation for the diagnosis of faults in energy systems. Moreover, I will tackle two other particularly impactful indirect applications, namely the explanation of agent behaviour using root cause analysis, and the attribution of responsibility and blame in multi-agent systems. Action theoretic formalizations of actual cause are seen by many as a key technology for overcoming the limitations of current proposals. The outcome of the research program will contribute to the development of formal theories as well as software tools for analyzing actual causation in a variety of practical domains. My students will develop causality theories, implement causal engines based on these, and evaluate them through carefully designed theorems and experiments, accumulating skills along the way that will prepare them well for industry and academia.
对实际因果关系的研究涉及在给定的日志中找到导致观察到的结果的行为或事件。因果关系分析在自动推理中起着至关重要的作用,并且在几乎每个领域都有许多应用,包括计算机科学(例如,用于数据库,程序验证,可解释的人工智能等),制造和工程、医学和健康科学(例如,用于诊断目的)以及侵权法(例如,分配责任和责备),仅举几例。例如,如果一架飞机坠毁,分析飞行记录器捕获的动作并识别导致这场灾难的动作是很有用的。自亚里士多德时代以来,哲学家们一直在努力解决这个基本问题,即究竟是什么导致了一种效应,但还没有提出一个足够普遍的适当定义。事实证明,一般来说,真正的因果关系是非常棘手的。 目前的正式方法,实际的因果关系是基于结构方程模型(SEM)。虽然这些模型非常流行,但它们的表现力有限,并且存在各种问题。该研究计划旨在克服实际因果关系形式化所涉及的一些挑战。为此,我和我的学生将发展一个基于行动和变化的正式理论的实际因果关系的综合理论,并研究其潜在的应用。在短期内,我将追求三个主要目标。首先,我将在离散动力系统中定义实际原因。我将确保我的形式化可以支持非线性场景,即那些观察到的事件只是部分有序的场景,并从客观的角度和个体代理的角度来建模因果关系。其次,我将研究混合动态域中的因果关系,其中变化可以涉及离散事件的发生,也可以是时间流动的结果,并由一些连续函数决定。最后,我将研究这个理论的各种应用。特别是,我将适用于能源系统故障的诊断因果关系。此外,我将解决另外两个特别有影响力的间接应用,即使用根本原因分析解释代理行为,以及多代理系统中的责任和责备的归属。许多人将实际原因的行动理论形式化视为克服当前建议局限性的关键技术。研究计划的结果将有助于发展正式的理论以及软件工具,用于分析各种实际领域的实际因果关系。我的学生将开发因果关系理论,基于这些实现因果引擎,并通过精心设计的定理和实验来评估它们,沿着为工业和学术界做好准备的方式积累技能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Khan, Shakil其他文献
The role of electrodeposition current density in the synthesis and non-enzymatic glucose sensing of oxidized zinc-tin hybrid nanostructures
- DOI:
10.1016/j.mssp.2020.104953 - 发表时间:
2020-04-01 - 期刊:
- 影响因子:4.1
- 作者:
Khan, Shakil;Rasheed, Muhammad Asim;Ali, Ghafar - 通讯作者:
Ali, Ghafar
Induction of HIF-1alpha expression by intermittent hypoxia: involvement of NADPH oxidase, Ca2+ signaling, prolyl hydroxylases, and mTOR.
通过间歇性缺氧诱导HIF-1Alpha表达:NADPH氧化酶,Ca2+信号传导,羟基羟基酶和MTOR的参与。
- DOI:
10.1002/jcp.21537 - 发表时间:
2008-12 - 期刊:
- 影响因子:5.6
- 作者:
Yuan, Guoxiang;Nanduri, Jayasri;Khan, Shakil;Semenza, Gregg L.;Prabhakar, Nanduri R. - 通讯作者:
Prabhakar, Nanduri R.
Texture of the nano-crystalline AlN thin films and the growth conditions in DC magnetron sputtering
- DOI:
10.1016/j.pnsc.2015.08.006 - 发表时间:
2015-08-01 - 期刊:
- 影响因子:4.7
- 作者:
Khan, Shakil;Shahid, Muhammad;Alam, M. - 通讯作者:
Alam, M.
Preparation of oxidized Zn-In nanostructures for electrochemical non-enzymatic cholesterol sensing
- DOI:
10.1016/j.mssp.2021.106101 - 发表时间:
2021-07-31 - 期刊:
- 影响因子:4.1
- 作者:
Khan, Shakil;Rasheed, Muhammad Asim;Ali, Ghafar - 通讯作者:
Ali, Ghafar
Khan, Shakil的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Khan, Shakil', 18)}}的其他基金
Action-theoretic formalization of actual causation and its applications
实际因果关系的行动理论形式化及其应用
- 批准号:
DGECR-2022-00368 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Launch Supplement
相似海外基金
CAREER: Game Theoretic Models for Robust Cyber-Physical Interactions: Inference and Design under Uncertainty
职业:稳健的网络物理交互的博弈论模型:不确定性下的推理和设计
- 批准号:
2336840 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Continuing Grant
CAREER: Chemically specific polymer models with field-theoretic simulations
职业:具有场论模拟的化学特定聚合物模型
- 批准号:
2337554 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Continuing Grant
CAREER: Information-Theoretic Measures for Fairness and Explainability in High-Stakes Applications
职业:高风险应用中公平性和可解释性的信息论测量
- 批准号:
2340006 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Continuing Grant
CAREER: Gauge-theoretic Floer invariants, C* algebras, and applications of analysis to topology
职业:规范理论 Floer 不变量、C* 代数以及拓扑分析应用
- 批准号:
2340465 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Continuing Grant
CAREER: Towards Trustworthy Machine Learning via Learning Trustworthy Representations: An Information-Theoretic Framework
职业:通过学习可信表示实现可信机器学习:信息理论框架
- 批准号:
2339686 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Continuing Grant
Collaborative Research: Scalable Circuit theoretic Framework for Large Grid Simulations and Optimizations: from Combined T&D Planning to Electromagnetic Transients
协作研究:大型电网仿真和优化的可扩展电路理论框架:来自组合 T
- 批准号:
2330195 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
CAREER: Machine learning, Mapping Spaces, and Obstruction Theoretic Methods in Topological Data Analysis
职业:拓扑数据分析中的机器学习、映射空间和障碍理论方法
- 批准号:
2415445 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Continuing Grant
Collaborative Research: Scalable Circuit theoretic Framework for Large Grid Simulations and Optimizations: from Combined T&D Planning to Electromagnetic Transients
协作研究:大型电网仿真和优化的可扩展电路理论框架:来自组合 T
- 批准号:
2330196 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
Collaborative Research: FMitF: Track I: Game Theoretic Updates for Network and Cloud Functions
合作研究:FMitF:第一轨:网络和云功能的博弈论更新
- 批准号:
2318970 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
Research on Game Theoretic-based Mobile Crowdsensing Ecosystem in Internet of Things
基于博弈论的物联网移动群智生态系统研究
- 批准号:
23K16877 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for Early-Career Scientists