Machine Learning and Solvers: The Next Frontier

机器学习和求解器:下一个前沿

基本信息

  • 批准号:
    RGPIN-2020-05106
  • 负责人:
  • 金额:
    $ 5.9万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Software security and reliability remain one of the most important and challenging technological problems we face today. As a consequence, there is an ever-present demand for scalable and effective testing, analysis, and verification (TAV) methods. Further, as machine learning (ML) systems continue to revolutionize many areas of engineering and industry, their reliability and security have become a grave concern. Hackers have found novel ways of launching adversarial attacks against ML systems. Fortunately, successful TAV methods developed for general software can also be adapted to address the reliability and security problems of ML systems. A critical component in many scalable and effective TAV methods is a logic (aka, SAT or SMT) solver, systems that automatically solve mathematical constraints obtained from analysis of programs. Interestingly, today's leading logic solvers inherently rely on ML for improved performance, a line of research that I pioneered over the last 6 years. Conversely, one powerful way of improving the reliability and security of ML systems is via logic-guided ML systems, another line of research I have recently been developing. This Discovery Grant will fund a bleeding-edge long-term research program with the following broad directions: ML for Logic Solvers: First, we propose to develop novel ML-based methods aimed at making solver algorithms even more efficient. A logic solver can be viewed as a collection of interacting and dynamic heuristics that aim to optimally initialize, select, and sequence proof rules for a given input formula. These optimization problems are best solved using online ML methods. I propose to develop novel deep neural networks (DNNs) and deep reinforcement learning (DRL) based online and dynamic methods to initialize, sequence, and select powerful proof rules inside solvers. We will develop these methods for SMT and extended resolution solvers. Logic Solvers for ML: Second, we propose to develop a set of logic-based ML algorithms, called Logic Guided Machine Learning (LGML), that use  solvers to verify, correct, and adversarially train ML models. The key insight is to combine solvers and ML models in a corrective feedback loop in order verify the ML models, and retrain them as necessary via 'optimal' counterexamples. The proposed research will have deep fundamental scientific, technical, and commercial impact. These results will not only enable improved ML-based solver design (co-developed with cryptanalysis and TAV methods for software and ML systems), but also logic-guided ML systems that are more reliable and robust against adversarial attacks. Further, the program aims at a deeper foundational understanding of why solver work at all, and thus paving the way for a more scientific approach to solver design. Most importantly, the program aims to train at least 6 HQP in logic solvers, ML, and combinations thereof, aimed at secure and reliable software and ML systems.
软件安全性和可靠性仍然是我们今天面临的最重要和最具挑战性的技术问题之一。因此,对可伸缩且有效的测试、分析和验证(TAV)方法的需求一直存在。此外,随着机器学习(ML)系统不断改变工程和工业的许多领域,它们的可靠性和安全性已经成为一个严重的问题。黑客已经找到了针对机器学习系统发起对抗性攻击的新方法。幸运的是,为一般软件开发的成功的TAV方法也可以用于解决机器学习系统的可靠性和安全性问题。在许多可扩展和有效的TAV方法中,一个关键的组成部分是逻辑(即SAT或SMT)求解器,即自动求解从程序分析中获得的数学约束的系统。有趣的是,当今领先的逻辑求解器本质上依赖于ML来提高性能,这是我在过去6年里率先开展的一系列研究。相反,提高机器学习系统可靠性和安全性的一个有效方法是通过逻辑引导的机器学习系统,这是我最近正在开发的另一个研究方向。这项发现基金将资助一项前沿的长期研究计划,该计划具有以下广泛的方向:逻辑求解器的ML:首先,我们建议开发基于ML的新颖方法,旨在使求解器算法更加高效。逻辑求解器可以看作是一组相互作用的动态启发式算法,其目的是为给定的输入公式最佳地初始化、选择和序列证明规则。这些优化问题最好使用在线ML方法来解决。我建议开发新的基于在线和动态方法的深度神经网络(dnn)和深度强化学习(DRL)来初始化、排序和选择求解器内部的强大证明规则。我们将为SMT和扩展分辨率求解器开发这些方法。机器学习的逻辑求解器:其次,我们建议开发一套基于逻辑的机器学习算法,称为逻辑引导机器学习(LGML),它使用求解器来验证、纠正和对抗性训练机器学习模型。关键的见解是将求解器和ML模型结合在一个纠正反馈循环中,以验证ML模型,并在必要时通过“最优”反例重新训练它们。拟议的研究将产生深刻的基础科学、技术和商业影响。这些结果不仅可以改进基于机器学习的求解器设计(与软件和机器学习系统的密码分析和TAV方法共同开发),还可以使逻辑引导的机器学习系统更可靠,更强大,抵御对抗性攻击。此外,该计划旨在加深对求解器工作原理的基础理解,从而为更科学的求解器设计方法铺平道路。最重要的是,该项目旨在培训至少6名HQP,包括逻辑解算器、ML及其组合,旨在开发安全可靠的软件和ML系统。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ganesh, Vijay其他文献

EXE: Automatically Generating Inputs of Death
Complex Golay pairs up to length 28: A search via computer algebra and programmatic SAT
  • DOI:
    10.1016/j.jsc.2019.10.013
  • 发表时间:
    2021-01-01
  • 期刊:
  • 影响因子:
    0.7
  • 作者:
    Bright, Curtis;Kotsireas, Ilias;Ganesh, Vijay
  • 通讯作者:
    Ganesh, Vijay
Transcriptome and Genome Analysis Uncovers a DMD Structural Variant: A Case Report.
  • DOI:
    10.1212/nxg.0000000000200064
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Folland, Chiara;Ganesh, Vijay;Weisburd, Ben;McLean, Catriona;Kornberg, Andrew J.;O'Donnell-Luria, Anne;Rehm, Heidi L.;Stevanovski, Igor;Chintalaphani, Sanjog R.;Kennedy, Paul;Deveson, Ira W.;Ravenscroft, Gianina
  • 通讯作者:
    Ravenscroft, Gianina
A nonexistence certificate for projective planes of order ten with weight 15 codewords
Applying computer algebra systems with SAT solvers to the Williamson conjecture
  • DOI:
    10.1016/j.jsc.2019.07.024
  • 发表时间:
    2020-09-01
  • 期刊:
  • 影响因子:
    0.7
  • 作者:
    Bright, Curtis;Kotsireas, Ilias;Ganesh, Vijay
  • 通讯作者:
    Ganesh, Vijay

Ganesh, Vijay的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ganesh, Vijay', 18)}}的其他基金

Machine Learning and Solvers: The Next Frontier
机器学习和求解器:下一个前沿
  • 批准号:
    RGPIN-2020-05106
  • 财政年份:
    2021
  • 资助金额:
    $ 5.9万
  • 项目类别:
    Discovery Grants Program - Individual
Machine Learning and Solvers: The Next Frontier
机器学习和求解器:下一个前沿
  • 批准号:
    RGPIN-2020-05106
  • 财政年份:
    2020
  • 资助金额:
    $ 5.9万
  • 项目类别:
    Discovery Grants Program - Individual
Next-generation Constraint Solvers for Software Engineering and Security
用于软件工程和安全的下一代约束求解器
  • 批准号:
    435967-2013
  • 财政年份:
    2019
  • 资助金额:
    $ 5.9万
  • 项目类别:
    Discovery Grants Program - Individual
Next-generation Constraint Solvers for Software Engineering and Security
用于软件工程和安全的下一代约束求解器
  • 批准号:
    435967-2013
  • 财政年份:
    2018
  • 资助金额:
    $ 5.9万
  • 项目类别:
    Discovery Grants Program - Individual
Next-generation Constraint Solvers for Software Engineering and Security
用于软件工程和安全的下一代约束求解器
  • 批准号:
    435967-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 5.9万
  • 项目类别:
    Discovery Grants Program - Individual
Next-generation Constraint Solvers for Software Engineering and Security
用于软件工程和安全的下一代约束求解器
  • 批准号:
    435967-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 5.9万
  • 项目类别:
    Discovery Grants Program - Individual
Next-generation Constraint Solvers for Software Engineering and Security
用于软件工程和安全的下一代约束求解器
  • 批准号:
    435967-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 5.9万
  • 项目类别:
    Discovery Grants Program - Individual
Next-generation Constraint Solvers for Software Engineering and Security
用于软件工程和安全的下一代约束求解器
  • 批准号:
    435967-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 5.9万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
  • 批准号:
    62003314
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
  • 批准号:
    61902016
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
  • 批准号:
    61806040
  • 批准年份:
    2018
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
  • 批准号:
    51769027
  • 批准年份:
    2017
  • 资助金额:
    38.0 万元
  • 项目类别:
    地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
  • 批准号:
    61573081
  • 批准年份:
    2015
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
  • 批准号:
    61572533
  • 批准年份:
    2015
  • 资助金额:
    66.0 万元
  • 项目类别:
    面上项目
E-Learning中学习者情感补偿方法的研究
  • 批准号:
    61402392
  • 批准年份:
    2014
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Delta-Complete SMT Solvers for Learning and Optimization Algorithms
用于学习和优化算法的 Delta-Complete SMT 求解器
  • 批准号:
    2869702
  • 财政年份:
    2023
  • 资助金额:
    $ 5.9万
  • 项目类别:
    Studentship
Machine Learning and Solvers: The Next Frontier
机器学习和求解器:下一个前沿
  • 批准号:
    RGPIN-2020-05106
  • 财政年份:
    2021
  • 资助金额:
    $ 5.9万
  • 项目类别:
    Discovery Grants Program - Individual
Rapid and Robust High Order Spectral Solvers for Learning Photonic Structures
用于学习光子结构的快速、鲁棒的高阶谱求解器
  • 批准号:
    2111283
  • 财政年份:
    2021
  • 资助金额:
    $ 5.9万
  • 项目类别:
    Standard Grant
Learning-based Adaptive Markov Chain Solvers for Realistic Lighting Simulation
用于真实照明模拟的基于学习的自适应马尔可夫链求解器
  • 批准号:
    534224-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 5.9万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Deep learning for branch prediction in SAT solvers
SAT 求解器中分支预测的深度学习
  • 批准号:
    563439-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 5.9万
  • 项目类别:
    University Undergraduate Student Research Awards
Learning-based Adaptive Markov Chain Solvers for Realistic Lighting Simulation
用于真实照明模拟的基于学习的自适应马尔可夫链求解器
  • 批准号:
    534224-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 5.9万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Machine Learning and Solvers: The Next Frontier
机器学习和求解器:下一个前沿
  • 批准号:
    RGPIN-2020-05106
  • 财政年份:
    2020
  • 资助金额:
    $ 5.9万
  • 项目类别:
    Discovery Grants Program - Individual
Learning-based Adaptive Markov Chain Solvers for Realistic Lighting Simulation
用于真实照明模拟的基于学习的自适应马尔可夫链求解器
  • 批准号:
    534224-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 5.9万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
OAC Core: Small: Higher Order Solvers for Training Machine Learning Models
OAC 核心:小型:用于训练机器学习模型的高阶求解器
  • 批准号:
    1908691
  • 财政年份:
    2019
  • 资助金额:
    $ 5.9万
  • 项目类别:
    Standard Grant
Elements: Software: NSCI: A high performance suite of SVD related solvers for machine learning
要素: 软件:NSCI:用于机器学习的 SVD 相关求解器的高性能套件
  • 批准号:
    1835821
  • 财政年份:
    2019
  • 资助金额:
    $ 5.9万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了