Robot Learning and Discovering Through Memorizing Visual and Auditory Interactions
机器人通过记忆视觉和听觉交互来学习和发现
基本信息
- 批准号:RGPIN-2022-04036
- 负责人:
- 金额:$ 3.5万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Since its foundation, Artificial Intelligence (AI) aims at becoming a system science targeting working in the wild, messy world, addressing key challenges such as architecture, learning and evaluation. To accomplish this, human-robot interaction (HRI) brings rich opportunities by addressing the integration challenges of embodied AI. The long term objective of my Discovery Grant (DG) research program is the study of how to integrate all the required decision-making processes, ranging from navigation to task accomplishment and interaction with others (robots or humans), so that robots can operate in real life settings over long periods of time. My strategy consists of designing robots with an increasing set of advanced perceptual, reasoning and action capabilities under real-time execution, robustness, adaptability and scalability, capable of being used in real life settings. In the short term, my research program focuses on learning from the use of spatial-temporal visual and auditory patterns to make the robots derive knowledge from its operation environments. Memory plays a central role in recognizing patterns and predicting upcoming percepts and action consequences, which is a key feature and critical component of intelligence. Building on my work on vision-based navigation and episodic memory models, along with cross-referenced information from visual and audio data (using spatial auditory data linked to visual data), I will study how to increase the ability of an autonomous robot to derive concepts, predict future events and elaborate behavioral strategies, by operating in dynamic conditions and interacting with people. Deep Neural Networks (DNNs) reveal to be powerful tools to learn the complexities of visual and audio data, which can be beneficial in providing cues and indications of what could be interesting elements in what the robot is experiencing. Using DNNs designed to detect objects, people, faces, pose, sounds and voice, I will use different representations/models to memorize the interaction history from which to derive knowledge and understanding. Experimentation involves conducting trials in long-lasting HRI scenarios using commercially available and custom-designed robots. Involving 2 postdoc, 2 PhDs, 2 Master's and 2 undergraduates, my research program integrates a large set of components, from vision and audio processing to robot control architecture, memory models, decision-making processes and HRI, with contributions to the fields of visuo-auditory cognition and semantic interpretation of embodied multimodal interaction. Its impacts range from applications on factory assembly lines to healthcare, rehabilitation and aging, and surveillance. All my research contributions funded by the DG program are open source, allowing sharing and contributing to the joint effort of bringing robots closer to people, improving quality of life and our understanding and ability of designing truly intelligent robots.
自成立以来,人工智能(AI)的目标是成为一门系统科学,目标是在野外,混乱的世界中工作,解决架构,学习和评估等关键挑战。为了实现这一目标,人机交互(HRI)通过解决嵌入式AI的集成挑战带来了丰富的机会。 我的发现补助金(DG)研究计划的长期目标是研究如何整合所有必要的决策过程,从导航到任务完成以及与他人(机器人或人类)的互动,以便机器人可以在真实的生活环境中长时间运行。我的策略包括设计机器人,使其具有越来越多的高级感知,推理和实时执行,鲁棒性,适应性和可扩展性下的行动能力,能够在真实的生活环境中使用。 在短期内,我的研究计划集中在学习使用时空视觉和听觉模式,使机器人从其操作环境中获取知识。记忆在识别模式和预测即将到来的感知和行动后果方面发挥着核心作用,这是智力的关键特征和关键组成部分。基于我在基于视觉的导航和情景记忆模型方面的工作,沿着来自视觉和音频数据的交叉引用信息(使用与视觉数据相关联的空间听觉数据),我将研究如何通过在动态条件下操作并与人互动来提高自主机器人推导概念、预测未来事件和制定行为策略的能力。 深度神经网络(DNN)是学习视觉和音频数据复杂性的强大工具,这有助于提供机器人正在经历的有趣元素的线索和指示。使用DNN来检测物体,人,面孔,姿势,声音和声音,我将使用不同的表示/模型来记住交互历史,从中获得知识和理解。实验包括使用商业上可用的和定制设计的机器人在长期HRI场景中进行试验。 我的研究项目涉及2名博士后,2名博士,2名硕士和2名本科生,从视觉和音频处理到机器人控制架构,记忆模型,决策过程和HRI,我的研究项目集成了大量的组件,对视听认知和体现多模态交互的语义解释领域做出了贡献。其影响范围从工厂装配线到医疗保健、康复和老龄化以及监控。我所有由DG计划资助的研究贡献都是开源的,允许共享和促进共同努力,使机器人更接近人类,提高生活质量和我们设计真正智能机器人的理解和能力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michaud, François其他文献
Michaud, François的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michaud, François', 18)}}的其他基金
Enabling Technologies for Collaborative Robotics in Manufacturing (CoRoM)
制造中协作机器人技术 (CoRoM)
- 批准号:
498011-2017 - 财政年份:2021
- 资助金额:
$ 3.5万 - 项目类别:
Collaborative Research and Training Experience
Learning, Memorization and Cognition in an Autonomous Robot Control Architecture
自主机器人控制架构中的学习、记忆和认知
- 批准号:
RGPIN-2016-05096 - 财政年份:2021
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Learning, Memorization and Cognition in an Autonomous Robot Control Architecture
自主机器人控制架构中的学习、记忆和认知
- 批准号:
RGPIN-2016-05096 - 财政年份:2020
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Enabling Technologies for Collaborative Robotics in Manufacturing (CoRoM)
制造中协作机器人技术 (CoRoM)
- 批准号:
498011-2017 - 财政年份:2020
- 资助金额:
$ 3.5万 - 项目类别:
Collaborative Research and Training Experience
Learning, Memorization and Cognition in an Autonomous Robot Control Architecture
自主机器人控制架构中的学习、记忆和认知
- 批准号:
RGPIN-2016-05096 - 财政年份:2019
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Enabling Technologies for Collaborative Robotics in Manufacturing (CoRoM)
制造中协作机器人技术 (CoRoM)
- 批准号:
498011-2017 - 财政年份:2019
- 资助金额:
$ 3.5万 - 项目类别:
Collaborative Research and Training Experience
Learning, Memorization and Cognition in an Autonomous Robot Control Architecture
自主机器人控制架构中的学习、记忆和认知
- 批准号:
RGPIN-2016-05096 - 财政年份:2018
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Multi-Function Mobile Manipulator Robot Platform
多功能移动机械手机器人平台
- 批准号:
RTI-2019-00630 - 财政年份:2018
- 资助金额:
$ 3.5万 - 项目类别:
Research Tools and Instruments
Enabling technologies for COllaborative Robotics in Manufacturing (CoRoM)
制造中协作机器人 (CoRoM) 的支持技术
- 批准号:
498011-2017 - 财政年份:2018
- 资助金额:
$ 3.5万 - 项目类别:
Collaborative Research and Training Experience
Development of a Position and Control System for an Omnidirectional Platform Using Vision, LIDAR and Line Following Technologies
使用视觉、激光雷达和巡线技术开发全向平台的位置和控制系统
- 批准号:
532396-2018 - 财政年份:2018
- 资助金额:
$ 3.5万 - 项目类别:
Engage Grants Program
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Discovering clinical endpoints of toxicity via graph machine learning and semantic data analysis
通过图机器学习和语义数据分析发现毒性的临床终点
- 批准号:
10745593 - 财政年份:2023
- 资助金额:
$ 3.5万 - 项目类别:
Development of machine learning methods for discovering symmetries in pattern dynamics
开发用于发现模式动力学对称性的机器学习方法
- 批准号:
22K13979 - 财政年份:2022
- 资助金额:
$ 3.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Discovering New Knowledge by Combining Symbolic Logic and Deep Learning
结合符号逻辑和深度学习发现新知识
- 批准号:
22K21302 - 财政年份:2022
- 资助金额:
$ 3.5万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Discovering drivers of canine hemangiosarcoma using a novel machine learning and multi-omics approach
使用新颖的机器学习和多组学方法发现犬血管肉瘤的驱动因素
- 批准号:
565832-2021 - 财政年份:2021
- 资助金额:
$ 3.5万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
GIS and Machine Learning: A New Approach to Discovering Archaeological Sites
GIS 和机器学习:发现考古遗址的新方法
- 批准号:
21K18408 - 财政年份:2021
- 资助金额:
$ 3.5万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Discovering intrinsic catalytic reaction mechanisms: using machine learning to 'crack' rate expressions
发现内在的催化反应机制:利用机器学习“破解”速率表达式
- 批准号:
2606002 - 财政年份:2021
- 资助金额:
$ 3.5万 - 项目类别:
Studentship
Discovering clinical endpoints of toxicity via graph machine learning and semantic data analysis
通过图机器学习和语义数据分析发现毒性的临床终点
- 批准号:
10371656 - 财政年份:2021
- 资助金额:
$ 3.5万 - 项目类别:
Stability of Deep Learning for Discovering Dynamics
用于发现动态的深度学习的稳定性
- 批准号:
566008-2021 - 财政年份:2021
- 资助金额:
$ 3.5万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
RI:Small:Investigating techniques that couple Markov Logic and Deep Learning with applications to discovering strategies to improve STEM learning
RI:小:研究将马尔可夫逻辑和深度学习与应用相结合的技术,以发现改善 STEM 学习的策略
- 批准号:
2008812 - 财政年份:2020
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
Learning Dynamics from Data: Discovering Interaction Laws of Particle and Agent Systems
从数据中学习动力学:发现粒子和代理系统的相互作用规律
- 批准号:
1913243 - 财政年份:2019
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant