Using statistical learning to build better Earth System Models
使用统计学习建立更好的地球系统模型
基本信息
- 批准号:RGPIN-2020-04488
- 负责人:
- 金额:$ 1.75万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Climate change caused by emissions of greenhouse gases presents an existential threat to society, industry and ecosystems around the world, and particularly in cold regions like Canada. Most Canadians will experience climate change at local scales, through changes to temperature, wind and rainfall patterns near their regions, cities, lakes and rivers. Climate scientists use sophisticated computer models to make projections of how global climate will respond to increasing greenhouse gas concentrations during the 21st century. However, future projections at the scale of individual Canadian river basins are highly uncertain, because models often disagree on whether future changes in precipitation and runoff will increase, or decrease, water availability. A major cause of the uncertainty is the grid box spacing of the models, known as the spatial resolution, which computational resources limit to about 100 km on each side. Decision-makers such as water managers need reliable river basin-scale projections with much finer grid spacing (around 10 km) to inform and adapt their management practices and infrastructure planning. Therefore, our inability as climate scientists to provide this information presents a major barrier to climate change adaptation in Canada, and beyond. The long-term goal of my research program is to improve the quality and efficiency of climate models to deliver global projections of climate change for Canada at a spatial resolution that is better suited to support decision-making activities. The first objective of the research is to develop and apply novel and efficient computing technologies, including methods based on artificial intelligence, to make it easier for climate scientists to produce climate projections that are useful for decision-makers. A second objective is to apply these high-resolution models to investigate the processes causing the uncertainty in future projections, such as snow accumulation and melt, or how clouds interact with pollution particles and sunlight. This ambitious research program represents a state-of-the-art fusion of modern earth system modelling and artificial intelligence methods, that has not been attempted before within a University environment in Canada. The research program will deliver essential training in climate science, modelling and artificial intelligence to a team of graduate and undergraduate students at the University of Waterloo. Graduates will exit the program with sophisticated and highly-marketable technical skills related to big data that are in high demand across Canada, as government agencies, NGOs and private industry undertake the next phase of evidence-based decision-making for climate change adaptation. The research and training outcomes will deliver new tools and technologies that will directly benefit government labs developing climate models, and all Canadians by improving our nation's capacity to develop resilient solutions to climate change at the local scale.
温室气体排放引起的气候变化对世界各地的社会、工业和生态系统构成了生存威胁,尤其是在加拿大这样的寒冷地区。大多数加拿大人将经历局部尺度的气候变化,通过他们所在地区、城市、湖泊和河流附近的温度、风和降雨模式的变化。气候科学家使用复杂的计算机模型来预测21世纪全球气候将如何对温室气体浓度的增加做出反应。然而,对加拿大单个流域的未来预测是高度不确定的,因为模型在降水和径流的未来变化是增加还是减少水的可用性方面经常存在分歧。不确定性的一个主要原因是模型的网格盒间距,即空间分辨率,其计算资源限制在每边100公里左右。水资源管理者等决策者需要可靠的流域尺度预测,其网格间距要小得多(约10公里),以便为他们的管理实践和基础设施规划提供信息和调整。因此,作为气候科学家,我们无法提供这些信息,这是加拿大和其他地区适应气候变化的主要障碍。我的研究项目的长期目标是提高气候模型的质量和效率,以更适合支持决策活动的空间分辨率为加拿大提供全球气候变化预测。这项研究的第一个目标是开发和应用新颖高效的计算技术,包括基于人工智能的方法,使气候科学家更容易做出对决策者有用的气候预测。第二个目标是应用这些高分辨率模型来研究导致未来预测不确定性的过程,如积雪和融化,或云如何与污染颗粒和阳光相互作用。这个雄心勃勃的研究项目代表了现代地球系统建模和人工智能方法的最先进融合,这在加拿大的大学环境中从未尝试过。该研究项目将为滑铁卢大学的研究生和本科生团队提供气候科学、建模和人工智能方面的基本培训。随着政府机构、非政府组织和私营企业为适应气候变化进行下一阶段的循证决策,毕业生将在毕业后掌握与大数据相关的复杂且高度市场化的技术技能,这些技能在加拿大各地都有很高的需求。研究和培训的成果将提供新的工具和技术,这些工具和技术将直接造福于开发气候模型的政府实验室,并通过提高我们国家在地方范围内开发应对气候变化的弹性解决方案的能力,使所有加拿大人受益。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fletcher, Christopher其他文献
Aging, Health and Place from the Perspective of Elders in an Inuit Community
- DOI:
10.1007/s10823-020-09398-5 - 发表时间:
2020-05-15 - 期刊:
- 影响因子:2
- 作者:
Baron, Marie;Fletcher, Christopher;Riva, Mylene - 通讯作者:
Riva, Mylene
Epistemic inclusion in the Qanuilirpitaa? Nunavik Inuit health survey: developing an Inuit model and determinants of health and well-being.
- DOI:
10.17269/s41997-022-00719-4 - 发表时间:
2024-01 - 期刊:
- 影响因子:4.3
- 作者:
Fletcher, Christopher;Riva, Mylene;Lyonnais, Marie-Claude;Baron, Annie;Saunders, Ida;Lynch, Melody;Baron, Marie - 通讯作者:
Baron, Marie
The Qanuilirpitaa? 2017 Nunavik Health Survey: design, methods, and lessons learned.
- DOI:
10.17269/s41997-023-00846-6 - 发表时间:
2024-01 - 期刊:
- 影响因子:4.3
- 作者:
Ayotte, Pierre;Gagnon, Susie;Riva, Mylene;Muckle, Gina;Hamel, Denis;Belanger, Richard E.;Fletcher, Christopher;Furgal, Christopher;Dawson, Aimee;Galarneau, Chantal;Lemire, Melanie;Gauthier, Marie-Josee;Labranche, Elena;Grey, Lucy;Rochette, Marie;Bouchard, Francoise - 通讯作者:
Bouchard, Francoise
Sociocultural factors in relation to mental health within the Inuit population of Nunavik.
- DOI:
10.17269/s41997-022-00705-w - 发表时间:
2024-01 - 期刊:
- 影响因子:4.3
- 作者:
Poliakova, Natalia;Riva, Mylene;Fletcher, Christopher;Desrochers-Couture, Mireille;Courtemanche, Yohann;Moisan, Caroline;Fraser, Sarah;Pepin, Camille;Belanger, Richard E.;Muckle, Gina - 通讯作者:
Muckle, Gina
Youth perspectives on community health in Nunavik: a community-engaged photovoice project.
- DOI:
10.17269/s41997-022-00687-9 - 发表时间:
2024-01 - 期刊:
- 影响因子:4.3
- 作者:
Pawlowski, Madeleine;Riva, Mylene;Fletcher, Christopher;Lyonnais, Marie-Claude;Arsenault-Hudon, David - 通讯作者:
Arsenault-Hudon, David
Fletcher, Christopher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fletcher, Christopher', 18)}}的其他基金
Using statistical learning to build better Earth System Models
使用统计学习建立更好的地球系统模型
- 批准号:
RGPIN-2020-04488 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Using statistical learning to build better Earth System Models
使用统计学习建立更好的地球系统模型
- 批准号:
RGPIN-2020-04488 - 财政年份:2020
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Machine learning to improve assimilation of snow observations for (sub)seasonal hydrologic forecasts
机器学习可改善(次)季节水文预报中雪观测的同化
- 批准号:
538084-2019 - 财政年份:2019
- 资助金额:
$ 1.75万 - 项目类别:
Engage Grants Program
Atmospheric circulation patterns in warmer worlds
温暖世界的大气环流模式
- 批准号:
402661-2011 - 财政年份:2018
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Atmospheric circulation patterns in warmer worlds
温暖世界的大气环流模式
- 批准号:
402661-2011 - 财政年份:2015
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Atmospheric circulation patterns in warmer worlds
温暖世界的大气环流模式
- 批准号:
402661-2011 - 财政年份:2014
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Atmospheric circulation patterns in warmer worlds
温暖世界的大气环流模式
- 批准号:
402661-2011 - 财政年份:2013
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Atmospheric circulation patterns in warmer worlds
温暖世界的大气环流模式
- 批准号:
402661-2011 - 财政年份:2012
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Atmospheric circulation patterns in warmer worlds
温暖世界的大气环流模式
- 批准号:
402661-2011 - 财政年份:2011
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Northern Dialogue Travel Costs Subsidies - Meeting in March 25 - 27, 2004
北方对话旅行费用补贴 - 2004 年 3 月 25 日至 27 日举行的会议
- 批准号:
305834-2003 - 财政年份:2003
- 资助金额:
$ 1.75万 - 项目类别:
Presidential Fund
相似国自然基金
基于随机网络演算的无线机会调度算法研究
- 批准号:60702009
- 批准年份:2007
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
REU Site: University of North Carolina at Greensboro - Complex Data Analysis using Statistical and Machine Learning Tools
REU 站点:北卡罗来纳大学格林斯伯勒分校 - 使用统计和机器学习工具进行复杂数据分析
- 批准号:
2244160 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Standard Grant
Disentangling the anatomical, functional and clinical heterogeneity of major depression, using machine learning methods
使用机器学习方法解开重度抑郁症的解剖学、功能和临床异质性
- 批准号:
10714834 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Imputing quantitative mass spectrometry proteomics data using non-negative matrix factorization
使用非负矩阵分解估算定量质谱蛋白质组数据
- 批准号:
10677226 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Map Paravascular Fluid Dynamic Signatures of Key Aging and AD Processes Using Dynamics Diffusion-Weighted Imaging
使用动力学扩散加权成像绘制关键衰老和 AD 过程的血管旁流体动态特征
- 批准号:
10739365 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Predicting language and literacy growth in children with ASD using statistical learning
使用统计学习预测自闭症儿童的语言和识字能力增长
- 批准号:
10862023 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Targeting the neurobiology of restricted and repetitive behaviors in children with autism using N-acetylcysteine
使用 N-乙酰半胱氨酸针对自闭症儿童限制性和重复性行为的神经生物学
- 批准号:
10758985 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Towards intra-operative guidance in brain tumor surgery using real-time resting-state functional MRI
使用实时静息态功能 MRI 进行脑肿瘤手术的术中指导
- 批准号:
10761498 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Using Machine Learning to Improve the Predictive Accuracy of Disease Cure
使用机器学习提高疾病治疗的预测准确性
- 批准号:
10654253 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Using instrumented everyday gait to predict falls in older adults using the WHS cohort
使用 WHS 队列,使用仪器化的日常步态来预测老年人跌倒
- 批准号:
10657828 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Statistical Methods for Inferring Gene-Phenotype Associations Using Omic Data from Gene Knockout and Human Phenotype Studies
使用基因敲除和人类表型研究的组学数据推断基因表型关联的统计方法
- 批准号:
10733165 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别: