Numerical analysis and high-accuracy algorithms for scattering, spectra, and interdisciplinary applications.
适用于散射、光谱和跨学科应用的数值分析和高精度算法。
基本信息
- 批准号:RGPIN-2019-06886
- 负责人:
- 金额:$ 3.06万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Mathematics provides an elegant framework to understand physical and biological phenomena, and the tools with which to probe the detailed behaviour of these systems. In this research program, I will be investigating some specific physical and biological systems from a mathematical viewpoint. A key goal is to develop robust and efficient computational techniques to help further our understanding. My research interests are concentrated in two major areas: (A) numerical analysis for scattering problems (with a recent focus on associated spectral problems), and (B) applications of mathematics to interdisciplinary problems. There is a natural mathematical connection between these two areas, with novel problems in science and engineering requiring the development of new algorithms. Conversely, careful analysis and simulation can yield deep insight into basic science questions. Computational scattering is concerned with the development and analysis of algorithms for studying wave propagation. My proposed research program in (A) continues the investigation and creation of fast and accurate structure--preserving algorithms to study challenging problems in scattering. My research has evolved to include eigenvalue problems (EVP). A new direction is the related area of computational spectral geometry, which concerns numerically simulating the interplay between the shape of an object and its spectrum. The most intuitive example is that of the fundamental tones of drumheads: given a drum, can we tell what its tones will be? And conversely, if we wanted to design a drumhead with a given set of tones, how would we find its shape? Some of these questions are classical, and others are of immediate societal relevance. The development of these computational tools presents many interesting mathematical and computational challenges, which we address in the program. Amongst the avenues we will explore is the possibility of using ideas from Bayesian optimization to develop new strategies for spectral calculations. The proposed program involves investigation in several related topics, including the analysis and approximation of an unusual constrained EVP arising in fluid--structure interaction. and the development of high--accuracy computational strategies for mixed Dirichlet--Neumann and Steklov eigenvalue computations. We will provide approximation strategies for these EVP, and investigate their use for computational spectral geometry. In area (B), I bring mathematical tools to bear on interdisciplinary problems, in collaborations with researchers in science and industry. Some existing questions concern applications of ideas from (A). In others, I will continue efforts to understand at a fundamental level how muscles produce force: how does muscle architecture, mass and tissue properties change force output? Mathematics can be used to shed light on the behaviour of these and other systems.
数学提供了一个优雅的框架来理解物理和生物现象,以及探索这些系统的详细行为的工具。在这个研究项目中,我将从数学的角度研究一些特定的物理和生物系统。一个关键的目标是开发强大而有效的计算技术,以帮助我们进一步理解。我的研究兴趣集中在两个主要领域:(A)散射问题的数值分析(最近重点关注相关的光谱问题),以及(B)数学在跨学科问题中的应用。这两个领域之间有着天然的数学联系,科学和工程中的新问题需要开发新的算法。相反,仔细的分析和模拟可以对基础科学问题产生深刻的见解。计算散射涉及研究波传播的算法的开发和分析。我在(A)中提出的研究计划继续研究和创建快速准确的结构保持算法,以研究散射中具有挑战性的问题。我的研究已经发展到包括特征值问题(EVP)。一个新的方向是计算光谱几何学的相关领域,它涉及数值模拟物体形状及其光谱之间的相互作用。最直观的例子是鼓面的基本音调:给定一个鼓,我们能说出它的音调吗?反过来说,如果我们想设计一个具有给定音调的鼓面,我们如何找到它的形状?其中一些问题是经典的,另一些则具有直接的社会相关性。 这些计算工具的发展提出了许多有趣的数学和计算挑战,我们在程序中解决。我们将探索的途径之一是使用贝叶斯优化的思想来开发光谱计算的新策略的可能性。拟议的程序涉及几个相关主题的调查,包括对流体-结构相互作用中一种不寻常的约束EVP的分析和近似。以及发展混合Dirichlet-Neumann和Steklov特征值计算的高精度计算策略。我们将为这些EVP提供近似策略,并研究它们在计算谱几何中的应用。在区域(B)中,我与科学和工业研究人员合作,将数学工具应用于跨学科问题。现有的一些问题涉及(A)中思想的应用。在其他方面,我将继续努力从根本上了解肌肉如何产生力量:肌肉结构、质量和组织特性如何改变力量输出?数学可以用来阐明这些和其他系统的行为。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nigam, Nilima其他文献
The effect of intramuscular fat on skeletal muscle mechanics: implications for the elderly and obese
- DOI:
10.1098/rsif.2015.0365 - 发表时间:
2015-08-06 - 期刊:
- 影响因子:3.9
- 作者:
Rahemi, Hadi;Nigam, Nilima;Wakeling, James M. - 通讯作者:
Wakeling, James M.
Regionalizing muscle activity causes changes to the magnitude and direction of the force from whole muscles-a modeling study
- DOI:
10.3389/fphys.2014.00298 - 发表时间:
2014-08-13 - 期刊:
- 影响因子:4
- 作者:
Rahemi, Hadi;Nigam, Nilima;Wakeling, James M. - 通讯作者:
Wakeling, James M.
Well-Posed Bayesian Inverse Problems: Priors with Exponential Tails
- DOI:
10.1137/16m1076824 - 发表时间:
2017-01-01 - 期刊:
- 影响因子:2
- 作者:
Hosseini, Bamdad;Nigam, Nilima - 通讯作者:
Nigam, Nilima
THE CELLULAR DYNAMICS OF BONE REMODELING: A MATHEMATICAL MODEL
- DOI:
10.1137/090746094 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:1.9
- 作者:
Ryser, Marc D.;Komarova, Svetlana V.;Nigam, Nilima - 通讯作者:
Nigam, Nilima
Mathematical Modeling of Spatio-Temporal Dynamics of a Single Bone Multicellular Unit
- DOI:
10.1359/jbmr.081229 - 发表时间:
2009-05-01 - 期刊:
- 影响因子:6.2
- 作者:
Ryser, Marc D.;Nigam, Nilima;Komarova, Svetlana V. - 通讯作者:
Komarova, Svetlana V.
Nigam, Nilima的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nigam, Nilima', 18)}}的其他基金
Numerical analysis and high-accuracy algorithms for scattering, spectra, and interdisciplinary applications.
适用于散射、光谱和跨学科应用的数值分析和高精度算法。
- 批准号:
RGPIN-2019-06886 - 财政年份:2021
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Numerical analysis and high-accuracy algorithms for scattering, spectra, and interdisciplinary applications.
适用于散射、光谱和跨学科应用的数值分析和高精度算法。
- 批准号:
RGPIN-2019-06886 - 财政年份:2020
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Numerical analysis and high-accuracy algorithms for scattering, spectra, and interdisciplinary applications.
适用于散射、光谱和跨学科应用的数值分析和高精度算法。
- 批准号:
RGPIN-2019-06886 - 财政年份:2019
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
"Fast and accurate structure-preserving algorithms in computational scattering, and interdisciplinary modeling and simulation"
“计算散射中快速准确的结构保持算法以及跨学科建模和仿真”
- 批准号:
250211-2012 - 财政年份:2018
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
"Fast and accurate structure-preserving algorithms in computational scattering, and interdisciplinary modeling and simulation"
“计算散射中快速准确的结构保持算法以及跨学科建模和仿真”
- 批准号:
250211-2012 - 财政年份:2017
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
"Fast and accurate structure-preserving algorithms in computational scattering, and interdisciplinary modeling and simulation"
“计算散射中快速准确的结构保持算法以及跨学科建模和仿真”
- 批准号:
250211-2012 - 财政年份:2015
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
"Fast and accurate structure-preserving algorithms in computational scattering, and interdisciplinary modeling and simulation"
“计算散射中快速准确的结构保持算法以及跨学科建模和仿真”
- 批准号:
250211-2012 - 财政年份:2014
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Canada Research Chair in Applied Mathematics
加拿大应用数学研究主席
- 批准号:
1000210482-2008 - 财政年份:2014
- 资助金额:
$ 3.06万 - 项目类别:
Canada Research Chairs
"Fast and accurate structure-preserving algorithms in computational scattering, and interdisciplinary modeling and simulation"
“计算散射中快速准确的结构保持算法以及跨学科建模和仿真”
- 批准号:
250211-2012 - 财政年份:2013
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Canada Research Chair in Applied Mathematics
加拿大应用数学研究主席
- 批准号:
1000210482-2008 - 财政年份:2013
- 资助金额:
$ 3.06万 - 项目类别:
Canada Research Chairs
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
利用全基因组关联分析和QTL-seq发掘花生白绢病抗性分子标记
- 批准号:31971981
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
基于SERS纳米标签和光子晶体的单细胞Western Blot定量分析技术研究
- 批准号:31900571
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
利用多个实验群体解析猪保幼带形成及其自然消褪的遗传机制
- 批准号:31972542
- 批准年份:2019
- 资助金额:57.0 万元
- 项目类别:面上项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
基于个体分析的投影式非线性非负张量分解在高维非结构化数据模式分析中的研究
- 批准号:61502059
- 批准年份:2015
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
多目标诉求下我国交通节能减排市场导向的政策组合选择研究
- 批准号:71473155
- 批准年份:2014
- 资助金额:60.0 万元
- 项目类别:面上项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于物质流分析的中国石油资源流动过程及碳效应研究
- 批准号:41101116
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Numerical analysis and high-accuracy algorithms for scattering, spectra, and interdisciplinary applications.
适用于散射、光谱和跨学科应用的数值分析和高精度算法。
- 批准号:
RGPIN-2019-06886 - 财政年份:2021
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Numerical analysis and high-accuracy algorithms for scattering, spectra, and interdisciplinary applications.
适用于散射、光谱和跨学科应用的数值分析和高精度算法。
- 批准号:
RGPIN-2019-06886 - 财政年份:2020
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Mechanism of two phase thermo-fluid behavior in porous media and its high accuracy numerical analysis based on multi-scale effect
多孔介质中两相热流体行为机理及其基于多尺度效应的高精度数值分析
- 批准号:
19KK0109 - 财政年份:2019
- 资助金额:
$ 3.06万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Numerical analysis and high-accuracy algorithms for scattering, spectra, and interdisciplinary applications.
适用于散射、光谱和跨学科应用的数值分析和高精度算法。
- 批准号:
RGPIN-2019-06886 - 财政年份:2019
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Design of musical instruments based on precise physical modeling and high-accuracy numerical analysis
基于精确物理建模和高精度数值分析的乐器设计
- 批准号:
19H04126 - 财政年份:2019
- 资助金额:
$ 3.06万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mathematics in image processing combining wavelet analysis and numerical method with guaranteed accuracy
小波分析与数值方法相结合的图像处理数学保证精度
- 批准号:
23540145 - 财政年份:2011
- 资助金额:
$ 3.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Visual Analysis of medical volume data using numerical differential calculus based on accuracy-tunable smoothing
使用基于精度可调平滑的数值微分演算对医疗体积数据进行可视化分析
- 批准号:
22500100 - 财政年份:2010
- 资助金额:
$ 3.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of Numerical Estimation Technique for Production of Welded Structure with High Accuracy
焊接结构高精度生产数值估算技术的开发
- 批准号:
15206080 - 财政年份:2003
- 资助金额:
$ 3.06万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Kinematic and Bulk Microphysical Structure of Deep Convection During Cape: Radar Analysis, Numerical Modeling and Accuracy Evaluation
海角深对流的运动学和体微物理结构:雷达分析、数值模拟和精度评估
- 批准号:
9200667 - 财政年份:1992
- 资助金额:
$ 3.06万 - 项目类别:
Continuing Grant
Research for Improving the Accuracy in Numerical Simulations of Gas Flow Behaviors in Internal Combustion Engines
提高内燃机气体流动行为数值模拟精度的研究
- 批准号:
02650155 - 财政年份:1990
- 资助金额:
$ 3.06万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)