Deep learning and physics-based approaches for ice-ocean monitoring
用于冰海监测的深度学习和基于物理的方法
基本信息
- 批准号:RGPIN-2022-03324
- 负责人:
- 金额:$ 3.13万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Sea ice cover in the Arctic is undergoing significant change. Decreasing ice extent and thickness, and an increasing open water season, are driving increased pressures on this ecologically sensitive region. Ways to monitor these changes are desperately needed by ice service operations worldwide as well as governmental decision makers. Sea ice concentration is a key variable that indicates the fraction of a specified area of the ocean that is covered by ice. It is typically monitored using remote sensing data acquired in the low-frequency microwave portion of the electromagnetic spectrum because data at these frequencies are not sensitive to cloud cover or sunlight. Both passive and active microwave sensors are used for sea ice concentration monitoring. Passive microwave sensors measure the energy naturally emitted by the earth, while active microwave sensors send a signal to the earth and measure the backscatter. Passive microwave sensors are used to monitor sea ice concentration at large scales (e.g., 30 km), while synthetic aperture radar (SAR) sensors provide higher resolution data (e.g. 50 m). SAR sensors are well suited to monitoring the marginal ice zone, a realm where ice eddies, floes and waves significantly modulate the sea ice cover. The recent launch of multiple SAR constellation systems is providing a rapidly growing data volume from SAR. This has subsequently spurred strong interest in automated methods to extract information from these data. Deep learning is a data-driven approach that can learn patterns from data, and is well suited to this task. However, these methods are widely viewed as a `black box', which hinders widespread acceptance of deep learning in downstream applications. Erroneous information provided by a deep learning algorithm could endanger those operating on the ice. For example, fishing boats that lack ice-strengthening need an accurate ice edge location. While there are several 'opening the box' methods proposed, these are designed for the problem space of everyday images that have distinct objects and colours. SAR sea ice images are greyscale images of multi-scale phenomena. Additionally, sea ice is a physical system that can be modelled using differential equations. The proposed research program will exploit these aspects to develop tractable, scale-aware, physically guided approaches. Both real data and simulated data will be used to develop the deep learning approaches, which is different from past work in this problem domain. This will allow a thorough investigation of the proposed methodologies. Expected outcomes are improved estimates of sea ice concentration in the marginal ice zone from satellite sensors benchmarked quantitatively against current leading products; and a novel deep learning framework for multiscale physical systems.
北极的海冰覆盖正在发生重大变化。海冰面积和厚度的减少,以及开放水域季节的增加,正在给这个生态敏感地区带来越来越大的压力。监测这些变化的方法是全球冰服务运营以及政府决策者迫切需要的。海冰浓度是一个关键变量,它表明海洋某一特定区域被冰覆盖的比例。通常使用在电磁波谱的低频微波部分获得的遥感数据进行监测,因为这些频率的数据对云层或阳光不敏感。无源和有源微波传感器均用于海冰浓度监测。被动微波传感器测量地球自然发射的能量,而主动微波传感器向地球发送信号并测量后向散射。无源微波传感器用于监测大尺度(例如30公里)的海冰浓度,而合成孔径雷达(SAR)传感器提供更高分辨率的数据(例如50米)。SAR传感器非常适合监测边缘冰区,这是一个冰涡、浮冰和波浪显著调节海冰覆盖的区域。最近推出的多个SAR星座系统正在提供快速增长的SAR数据量,这随后激发了人们对从这些数据中提取信息的自动化方法的强烈兴趣。深度学习是一种数据驱动的方法,可以从数据中学习模式,非常适合这项任务。然而,这些方法被广泛视为“黑箱”,阻碍了深度学习在下游应用中的广泛接受。深度学习算法提供的错误信息可能会危及在冰上操作的人员。例如,缺乏冰强化的渔船需要精确的冰边缘位置。虽然提出了几种“打开盒子”的方法,但这些方法都是为具有不同物体和颜色的日常图像的问题空间而设计的。SAR海冰图像是多尺度现象的灰度图像。此外,海冰是一个可以用微分方程来模拟的物理系统。拟议的研究计划将利用这些方面来开发易于处理的、规模感知的、物理指导的方法。真实数据和模拟数据都将用于开发深度学习方法,这与过去在该问题领域的工作不同。这将允许对提议的方法进行彻底的调查。预期结果是通过卫星传感器对边缘冰区海冰浓度的改进估计,以目前的主要产品为定量基准;以及一种新的多尺度物理系统深度学习框架。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Scott, Andrea其他文献
An Update on the Pharmacological Treatment of Nonalcoholic Fatty Liver Disease: Beyond Lifestyle Modifications.
- DOI:
10.1002/cld.708 - 发表时间:
2018-04-01 - 期刊:
- 影响因子:0
- 作者:
Alkhouri, Naim;Scott, Andrea - 通讯作者:
Scott, Andrea
Professional relations in sport healthcare: Workplace responses to organisational change
- DOI:
10.1016/j.socscimed.2010.11.016 - 发表时间:
2011-02-01 - 期刊:
- 影响因子:5.4
- 作者:
Malcolm, Dominic;Scott, Andrea - 通讯作者:
Scott, Andrea
Transformative Stories: A Framework for Crafting Stories for Social Onropact Organizations
- DOI:
10.1509/jppm.15.133 - 发表时间:
2016-09-01 - 期刊:
- 影响因子:7.8
- 作者:
Bublitz, Melissa G.;Escalas, Jennifer Edson;Scott, Andrea - 通讯作者:
Scott, Andrea
Scott, Andrea的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Scott, Andrea', 18)}}的其他基金
Toward improved forecasts of sea-ice thickness
改进海冰厚度的预测
- 批准号:
418344-2012 - 财政年份:2021
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
Toward improved forecasts of sea-ice thickness
改进海冰厚度的预测
- 批准号:
418344-2012 - 财政年份:2020
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
Toward improved forecasts of sea-ice thickness
改进海冰厚度的预测
- 批准号:
418344-2012 - 财政年份:2019
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
Toward improved forecasts of sea-ice thickness
改进海冰厚度的预测
- 批准号:
418344-2012 - 财政年份:2018
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
Toward a novel approach for assimilation of SAR-based flood observations in a fully coupled hydrological model
探索一种在全耦合水文模型中同化基于 SAR 的洪水观测的新方法
- 批准号:
520222-2017 - 财政年份:2017
- 资助金额:
$ 3.13万 - 项目类别:
Engage Grants Program
Toward improved forecasts of sea-ice thickness
改进海冰厚度的预测
- 批准号:
418344-2012 - 财政年份:2017
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
Toward improved forecasts of sea-ice thickness
改进海冰厚度的预测
- 批准号:
418344-2012 - 财政年份:2014
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
Toward improved forecasts of sea-ice thickness
改进海冰厚度的预测
- 批准号:
418344-2012 - 财政年份:2013
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
Toward improved forecasts of sea-ice thickness
改进海冰厚度的预测
- 批准号:
418344-2012 - 财政年份:2012
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
Large eddy simulations of turbomachinery flows
涡轮机械流动的大涡模拟
- 批准号:
304073-2004 - 财政年份:2005
- 资助金额:
$ 3.13万 - 项目类别:
Postgraduate Scholarships - Doctoral
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
儿童音乐能力发展对语言与社会认知能力及脑发育的影响
- 批准号:31971003
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
多场景网络学习中基于行为-情感-主题联合建模的学习者兴趣挖掘关键技术研究
- 批准号:61702207
- 批准年份:2017
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于异构医学影像数据的深度挖掘技术及中枢神经系统重大疾病的精准预测
- 批准号:61672236
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Illuminating patterns and processes of water quality in U.S. rivers using physics-guided deep learning
使用物理引导的深度学习阐明美国河流的水质模式和过程
- 批准号:
2346471 - 财政年份:2024
- 资助金额:
$ 3.13万 - 项目类别:
Continuing Grant
CAREER: Physics-Informed Deep Learning for Understanding Earthquake Slip Complexity
职业:基于物理的深度学习用于理解地震滑动的复杂性
- 批准号:
2339996 - 财政年份:2024
- 资助金额:
$ 3.13万 - 项目类别:
Continuing Grant
Enhancing the Accuracy and Interpretability of Global Flood Models with AI: Development of a Physics-Guided Deep Learning Model Considering River Network Topology
利用人工智能提高全球洪水模型的准确性和可解释性:考虑河网拓扑的物理引导深度学习模型的开发
- 批准号:
24K17353 - 财政年份:2024
- 资助金额:
$ 3.13万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Accelerating Scientific Discovery via Deep Learning with Strong Physics Inductive Biases
职业:通过具有强物理归纳偏差的深度学习加速科学发现
- 批准号:
2338909 - 财政年份:2024
- 资助金额:
$ 3.13万 - 项目类别:
Continuing Grant
Ultra-precision clinical imaging and detection of Alzheimers Disease using deep learning
使用深度学习进行超精密临床成像和阿尔茨海默病检测
- 批准号:
10643456 - 财政年份:2023
- 资助金额:
$ 3.13万 - 项目类别:
Collaborative Research: A Physics-Informed Flood Early Warning System for Agricultural Watersheds with Explainable Deep Learning and Process-Based Modeling
合作研究:基于物理的农业流域洪水预警系统,具有可解释的深度学习和基于过程的建模
- 批准号:
2243776 - 财政年份:2023
- 资助金额:
$ 3.13万 - 项目类别:
Standard Grant
Collaborative Research: A Physics-Informed Flood Early Warning System for Agricultural Watersheds with Explainable Deep Learning and Process-Based Modeling
合作研究:基于物理的农业流域洪水预警系统,具有可解释的深度学习和基于过程的建模
- 批准号:
2243775 - 财政年份:2023
- 资助金额:
$ 3.13万 - 项目类别:
Standard Grant
Development of deep learning for efficient search of continuous gravitational waves toward exploring new physics and new particles
发展深度学习以有效搜索连续引力波以探索新物理和新粒子
- 批准号:
23K13099 - 财政年份:2023
- 资助金额:
$ 3.13万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Physics-informed deep learning approach for simulation and data assimilation of earthquake cycles
用于地震周期模拟和数据同化的物理知识深度学习方法
- 批准号:
23K03552 - 财政年份:2023
- 资助金额:
$ 3.13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Distortion Correction in Functional MRI with Deep Learning
利用深度学习进行功能 MRI 畸变校正
- 批准号:
10647991 - 财政年份:2023
- 资助金额:
$ 3.13万 - 项目类别: