Hodge Theory of Singular Curves

奇异曲线霍奇理论

基本信息

  • 批准号:
    8002231
  • 负责人:
  • 金额:
    $ 3.62万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1980
  • 资助国家:
    美国
  • 起止时间:
    1980-06-01 至 1984-12-31
  • 项目状态:
    已结题

项目摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jerome Hoffman其他文献

Jerome Hoffman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jerome Hoffman', 18)}}的其他基金

US-China Collaboration: Problems in Computational Algebraic Geometry
中美合作:计算代数几何问题
  • 批准号:
    1318015
  • 财政年份:
    2013
  • 资助金额:
    $ 3.62万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
  • 批准号:
    12247163
  • 批准年份:
    2022
  • 资助金额:
    18.00 万元
  • 项目类别:
    专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
  • 批准号:
    61671064
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Nonlinear critical point theory near singular solutions
奇异解附近的非线性临界点理论
  • 批准号:
    EP/W026597/1
  • 财政年份:
    2023
  • 资助金额:
    $ 3.62万
  • 项目类别:
    Research Grant
Applications of Geometrical Singular Perturbation Theory in Hyperplasticity Accelerated Ratcheting Models
几何奇异摄动理论在超塑性加速棘轮模型中的应用
  • 批准号:
    2888423
  • 财政年份:
    2023
  • 资助金额:
    $ 3.62万
  • 项目类别:
    Studentship
Spectral theory of singular surfaces
奇异表面的谱理论
  • 批准号:
    RGPIN-2018-04389
  • 财政年份:
    2022
  • 资助金额:
    $ 3.62万
  • 项目类别:
    Discovery Grants Program - Individual
Cross-disciplinary fusion of singular phenomena by singularity theory
奇点理论对奇点现象的跨学科融合
  • 批准号:
    22KK0034
  • 财政年份:
    2022
  • 资助金额:
    $ 3.62万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
CAREER: Singular Riemannian Foliations and Applications to Curvature and Invariant Theory
职业:奇异黎曼叶状结构及其在曲率和不变理论中的应用
  • 批准号:
    2042303
  • 财政年份:
    2021
  • 资助金额:
    $ 3.62万
  • 项目类别:
    Continuing Grant
Singular integral operators and special functions in scattering theory
散射理论中的奇异积分算子和特殊函数
  • 批准号:
    21K03292
  • 财政年份:
    2021
  • 资助金额:
    $ 3.62万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Spectral theory of singular surfaces
奇异表面的谱理论
  • 批准号:
    RGPIN-2018-04389
  • 财政年份:
    2021
  • 资助金额:
    $ 3.62万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Properties of Solutions to Singular Stochastic Partial Differential Equations from Quantum Field Theory
职业:量子场论奇异随机偏微分方程解的性质
  • 批准号:
    2044415
  • 财政年份:
    2021
  • 资助金额:
    $ 3.62万
  • 项目类别:
    Continuing Grant
Spectral theory of singular surfaces
奇异表面的谱理论
  • 批准号:
    RGPIN-2018-04389
  • 财政年份:
    2020
  • 资助金额:
    $ 3.62万
  • 项目类别:
    Discovery Grants Program - Individual
A New Approach and Development to Singular Integrals in Noncommutative Harmonic Analysis - Fusion of Real Analysis and Representation Theory
非交换调和分析中奇异积分的新方法和发展——实分析与表示论的融合
  • 批准号:
    20K03638
  • 财政年份:
    2020
  • 资助金额:
    $ 3.62万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了