Mathematical Sciences: The Geometry of Kleinian Groups and of Teichmuller Space
数学科学:克莱尼群和泰希米勒空间的几何
基本信息
- 批准号:8700642
- 负责人:
- 金额:$ 6.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1987
- 资助国家:美国
- 起止时间:1987-06-15 至 1990-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Bonahon will study the classification problem for Kleinian groups. As a first step, he plans to investigate the topological type of the limit set of a Kleinian group. In a different but closely related domain, he wants to study the geometry of the Teichmuller space of a surface from the viewpoint of geodesic currents, which he has developed in some of his earlier work. These are classical problems of geometric analysis attacked by topological means. The methods developed will be widely appreciated in mathematics and neighboring disciplines.
Bonahon将为Kleinian研究分类问题 组 作为第一步,他计划研究拓扑 一个Kleinian群的极限集的类型。 在一个不同的, 他想研究的是宇宙的几何学, 从测地线的观点看曲面的Teichmuller空间 电流,他已经在他的一些早期工作开发。 这些都是几何分析的经典问题, 拓扑方法 开发的方法将广泛用于 在数学和邻近学科中受到赞赏。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Francis Bonahon其他文献
Variétés Hyperboliques À Géodésiques Arbitrairement Courtes
各种双曲线和大地仲裁法庭
- DOI:
10.1112/blms/20.3.255 - 发表时间:
1988 - 期刊:
- 影响因子:0.9
- 作者:
Francis Bonahon;Jean - 通讯作者:
Jean
Difféotopies des espaces lenticulaires
- DOI:
10.1016/0040-9383(83)90016-2 - 发表时间:
1983 - 期刊:
- 影响因子:0
- 作者:
Francis Bonahon - 通讯作者:
Francis Bonahon
Miraculous cancellations for quantum $SL_2$
量子 $SL_2$ 奇迹般取消
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Francis Bonahon - 通讯作者:
Francis Bonahon
Central elements in the $$\textrm{SL}_d$$ -skein algebra of a surface
- DOI:
10.1007/s00209-024-03559-9 - 发表时间:
2024-07-26 - 期刊:
- 影响因子:1.000
- 作者:
Francis Bonahon;Vijay Higgins - 通讯作者:
Vijay Higgins
Central elements in the $mathrm{SL}_d$-skein algebra of a surface
曲面的 $mathrm{SL}_d$-skein 代数中的中心元素
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Francis Bonahon;Vijay Higgins - 通讯作者:
Vijay Higgins
Francis Bonahon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Francis Bonahon', 18)}}的其他基金
Character Varieties and Quantum Invariants
字符种类和量子不变量
- 批准号:
1711297 - 财政年份:2017
- 资助金额:
$ 6.7万 - 项目类别:
Continuing Grant
Classical and quantum homomorphisms from discrete groups to Lie groups
从离散群到李群的经典和量子同态
- 批准号:
1406559 - 财政年份:2014
- 资助金额:
$ 6.7万 - 项目类别:
Continuing Grant
Character varieties of surfaces: classical and quantum aspects
表面的特征变化:经典和量子方面
- 批准号:
1105402 - 财政年份:2011
- 资助金额:
$ 6.7万 - 项目类别:
Standard Grant
Classical and quantum hyperbolic geometry
经典和量子双曲几何
- 批准号:
0604866 - 财政年份:2006
- 资助金额:
$ 6.7万 - 项目类别:
Continuing Grant
Mathematical Sciences: Geometry of Hyperbolic 3-Dimensional Manifolds
数学科学:双曲三维流形的几何
- 批准号:
9504282 - 财政年份:1995
- 资助金额:
$ 6.7万 - 项目类别:
Continuing Grant
Mathematical Sciences: Geometry of Hyperbolic 3-Manifolds
数学科学:双曲 3 流形的几何
- 批准号:
9201466 - 财政年份:1992
- 资助金额:
$ 6.7万 - 项目类别:
Continuing Grant
Mathematical Sciences: Limit Sets of Kleinian Groups and Hyperbolic Groups
数学科学:克莱因群和双曲群的极限集
- 批准号:
9001895 - 财政年份:1990
- 资助金额:
$ 6.7万 - 项目类别:
Standard Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Conference on Symplectic Geometry and Topology at the International Center for Mathematical Sciences
国际数学科学中心辛几何和拓扑会议
- 批准号:
1608194 - 财政年份:2016
- 资助金额:
$ 6.7万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences - Hodge Theory, Complex Geometry, and Representation Theory
NSF/CBMS 数学科学区域会议 - 霍奇理论、复几何和表示论
- 批准号:
1137952 - 财政年份:2012
- 资助金额:
$ 6.7万 - 项目类别:
Standard Grant
IGERT: Geometry and Dynamics -- Integrated Education in the Mathematical Sciences
IGERT:几何与动力学——数学科学综合教育
- 批准号:
1068620 - 财政年份:2011
- 资助金额:
$ 6.7万 - 项目类别:
Continuing Grant
CBMS Regional Conference in the Mathematical Sciences - "Families of Riemann surfaces and Weil-Petersson Geometry'' - Summer 2009; New Britain, CT
CBMS 数学科学区域会议 -“黎曼曲面家族和 Weil-Petersson 几何” - 2009 年夏季;康涅狄格州新不列颠
- 批准号:
0834134 - 财政年份:2009
- 资助金额:
$ 6.7万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences: Tropical Geometry & Mirror Symmetry, December 13-17, 2008
NSF/CBMS 数学科学区域会议:热带几何
- 批准号:
0735319 - 财政年份:2008
- 资助金额:
$ 6.7万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences: The Interplay Between Convex Geometry and Harmonic Analysis, July 29 - August 2, 2006
NSF/CBMS 数学科学区域会议:凸几何与调和分析之间的相互作用,2006 年 7 月 29 日至 8 月 2 日
- 批准号:
0532656 - 财政年份:2006
- 资助金额:
$ 6.7万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences: Fully Nonlinear Equations in Geometry
NSF/CBMS 数学科学区域会议:几何中的完全非线性方程
- 批准号:
0225735 - 财政年份:2003
- 资助金额:
$ 6.7万 - 项目类别:
Standard Grant
Mathematical Sciences: Dynamics, Hyperbolic Geometry and Quasiconformal Maps
数学科学:动力学、双曲几何和拟共形映射
- 批准号:
9996234 - 财政年份:1998
- 资助金额:
$ 6.7万 - 项目类别:
Continuing Grant
Mathematical Sciences: The Geometry of Kernel Subgroups of Nonpositively Curved Cube Complex Groups
数学科学:非正曲立方复群核子群的几何
- 批准号:
9996342 - 财政年份:1998
- 资助金额:
$ 6.7万 - 项目类别:
Standard Grant
Mathematical Sciences: Hamiltonian Theory of Soliton Equations and Geometry of Moduli Spaces
数学科学:孤子方程哈密顿理论和模空间几何
- 批准号:
9802577 - 财政年份:1998
- 资助金额:
$ 6.7万 - 项目类别:
Standard Grant