Mathematical Sciences: The Invariants of n x n Matrices

数学科学:n x n 矩阵的不变量

基本信息

  • 批准号:
    8801967
  • 负责人:
  • 金额:
    $ 7.28万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1988
  • 资助国家:
    美国
  • 起止时间:
    1988-07-01 至 1991-12-31
  • 项目状态:
    已结题

项目摘要

The project supported concerns the ring of invariants, C(n,r), of a set of r generic nxn matrices over a field K and the trace ring, R(n,r). The main problem is to find presentations for C(n,r) as an algebra over K and R(n,r) as an algebra over C(n,r). The project will also consider the minimal degree of elements in a generating set and whether the quotient field of C(n,r) is purely transcendental over K. The research supported concerns matrix theory, ring theory and the calculation of invariants. In particular, this involves an old problem of determining what mathematical functions are preserved under various transformations. This is of interest in many areas of science as well as in mathematics.
支持的项目涉及域K上的r个泛型nxn矩阵集合的不变量环C(n,r)和迹环r (n,r)。主要的问题是找到C(n,r)在K上的代数表示和r (n,r)在C(n,r)上的代数表示。本项目还将考虑生成集中元素的最小度以及C(n,r)的商域是否纯超越k。支持的研究涉及矩阵理论,环理论和不变量的计算。特别是,这涉及到一个老问题,即确定在各种变换下保留哪些数学函数。这在许多科学领域和数学领域都是令人感兴趣的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Edward Formanek其他文献

The equations −1 t −1 st=u −1 v −1 uv in a free product of groups
  • DOI:
    10.1007/bf01214735
  • 发表时间:
    1977-02-01
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Robert G. Burns;Charles C. Edmunds;Edward Formanek
  • 通讯作者:
    Edward Formanek
The Nagata-Higman Theorem
  • DOI:
    10.1007/bf00053297
  • 发表时间:
    1990-10-01
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Edward Formanek
  • 通讯作者:
    Edward Formanek
Ideals in group rings of free products
  • DOI:
    10.1007/bf02761385
  • 发表时间:
    1978-03-01
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Edward Formanek;A. I. Lichtman
  • 通讯作者:
    A. I. Lichtman
The group algebra of the infinite symmetric group
  • DOI:
    10.1007/bf02761809
  • 发表时间:
    1976-09-01
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Edward Formanek;John Lawrence
  • 通讯作者:
    John Lawrence
Two notes on the Jacobian Conjecture
  • DOI:
    10.1007/bf01210711
  • 发表时间:
    1987-10-01
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    Edward Formanek
  • 通讯作者:
    Edward Formanek

Edward Formanek的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Edward Formanek', 18)}}的其他基金

Kostka polynomials and affine Kac-Moody algebras
Kostka 多项式和仿射 Kac-Moody 代数
  • 批准号:
    0701258
  • 财政年份:
    2007
  • 资助金额:
    $ 7.28万
  • 项目类别:
    Standard Grant
nxn Matrices - Representations of Infinite Groups and Invariants
nxn 矩阵 - 无限群和不变量的表示
  • 批准号:
    9610118
  • 财政年份:
    1997
  • 资助金额:
    $ 7.28万
  • 项目类别:
    Standard Grant
Mathematical Sciences: The Polynomial Identities and Invariants of nxn Matrices
数学科学:nxn 矩阵的多项式恒等式和不变量
  • 批准号:
    9401266
  • 财政年份:
    1994
  • 资助金额:
    $ 7.28万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Matrices and Their Invariants
数学科学:矩阵及其不变量
  • 批准号:
    9101378
  • 财政年份:
    1991
  • 资助金额:
    $ 7.28万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: The Invariants and Polynomial Identities of N X N Matrices
数学科学:N X N 矩阵的不变量和多项式恒等式
  • 批准号:
    8219477
  • 财政年份:
    1983
  • 资助金额:
    $ 7.28万
  • 项目类别:
    Continuing Grant
The Center of the Ring of Generic Matrices
泛型矩阵环的中心
  • 批准号:
    7901056
  • 财政年份:
    1979
  • 资助金额:
    $ 7.28万
  • 项目类别:
    Standard Grant

相似国自然基金

Handbook of the Mathematics of the Arts and Sciences的中文翻译
  • 批准号:
    12226504
  • 批准年份:
    2022
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
SCIENCE CHINA: Earth Sciences
  • 批准号:
    41224003
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21224005
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Information Sciences
  • 批准号:
    61224002
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51224001
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21024806
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
  • 批准号:
    81024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
  • 批准号:
    41024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Mathematical Sciences: Properties of Quantum Invariants in 3-Dimensional Topology
数学科学:三维拓扑中量子不变量的性质
  • 批准号:
    0196235
  • 财政年份:
    2000
  • 资助金额:
    $ 7.28万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Properties of Quantum Invariants in 3-Dimensional Topology
数学科学:三维拓扑中量子不变量的性质
  • 批准号:
    9996368
  • 财政年份:
    1998
  • 资助金额:
    $ 7.28万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Invariants for Knots and Links in 3-Manifolds
数学科学:3-流形中的结和链接的不变量
  • 批准号:
    9996227
  • 财政年份:
    1998
  • 资助金额:
    $ 7.28万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Properties of Quantum Invariants in 3-Dimensional Topology
数学科学:三维拓扑中量子不变量的性质
  • 批准号:
    9704893
  • 财政年份:
    1997
  • 资助金额:
    $ 7.28万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Knot Theory: New Invariants and TheirTopology
数学科学:纽结理论:新不变量及其拓扑
  • 批准号:
    9796130
  • 财政年份:
    1997
  • 资助金额:
    $ 7.28万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Invariants for Knots and Links in 3-Manifolds
数学科学:3-流形中的结和链接的不变量
  • 批准号:
    9626140
  • 财政年份:
    1996
  • 资助金额:
    $ 7.28万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Holomorphic Invariants of 3-Manifolds
数学科学:3-流形的全纯不变量
  • 批准号:
    9626544
  • 财政年份:
    1996
  • 资助金额:
    $ 7.28万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Low Dimensional Manifolds: Their Symmetries and Topological Invariants
数学科学:低维流形:它们的对称性和拓扑不变量
  • 批准号:
    9529310
  • 财政年份:
    1996
  • 资助金额:
    $ 7.28万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Quantum and Finite Type Invariants of Links in 3-Manifolds, Quasicrystals
数学科学:3-流形、准晶体中链接的量子和有限型不变量
  • 批准号:
    9626404
  • 财政年份:
    1996
  • 资助金额:
    $ 7.28万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Algebraic Geometry and Seiberg-Witten Invariants
数学科学:代数几何和 Seiberg-Witten 不变量
  • 批准号:
    9622681
  • 财政年份:
    1996
  • 资助金额:
    $ 7.28万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了