The Warranty Problem: Its Statistical and Game Theoretic Aspects

保修问题:统计和博弈论方面

基本信息

  • 批准号:
    9122494
  • 负责人:
  • 金额:
    $ 18.58万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1992
  • 资助国家:
    美国
  • 起止时间:
    1992-02-15 至 1996-07-31
  • 项目状态:
    已结题

项目摘要

Consumer products often carry warranties which are either one- dimensional (indexed by time in service or amount of usage) or two- dimensional (indexed by both of these variables). The focus of this project is on two-dimensional warranties, virtually an unaddressed topic. The warranty scenario raises at least two classes or research issues: the specification of an optimum price/warranty combination, and the forecast of a reserve fund to meet future claims. The former is multidisciplinary, involving aspects of economics, game theory, marketing, operations research, and probabilistic modeling. The latter involves the analysis of time series and point processes in two dimensions, for which the use of Bayesian methods is appropriate. This project addresses the following aspects of these issues. 1. Formalization of the first issue to facilitate mathematical development of the individual pieces. 2. Development of probabilistic models for the occurrence of events (failures) indexed by time and usage. 3. Renewal theory for points in a plane generated by the models developed. 4. Development of meaningful utility functions based on subjective probability considerations which describe the competitive behavior between manufacturers and consumers, and between manufacturers. 5. Development of a technology for undertaking times series analysis in two dimensions. 6. Statistical inference for point processes in a plane. Although all aspects of the project are motivated by the warranty problem, items 2, 3, 5, and 6 have scientific merit of their own and will provide new tools for the decision sciences.
消费品通常带有保修,这是一个- 二维(按服务时间或使用量索引)或二维- 维度(由这两个变量索引)。 的焦点 这个项目是二维保证,几乎是一个 未解决的话题 保修方案提出了至少两个类或研究 问题:最佳价格/保修的规格 合并,并预测储备基金,以满足未来 索赔 前者是多学科的,涉及以下方面: 经济学、博弈论、市场营销、运筹学,以及 概率建模 后者涉及时间的分析 系列和点过程在两个维度,其中使用 贝叶斯方法是合适的。 该项目解决了 这些问题的后续。 1. 正式提出第一个问题, 数学发展的各个部分。 2. 发展发生的概率模型 按时间和使用情况索引的事件(故障)。 3. 生成平面上点的更新理论 模型开发。 4. 开发有意义的效用函数, 主观概率考虑,描述了 制造商和消费者之间的竞争行为,以及 制造商之间。 5. 一种时间序列提取技术的开发 从两个维度进行分析。 6. 平面中点过程的统计推断。 尽管项目的各个方面都是由 保修问题,第2、3、5和6项具有科学价值, 它将为决策科学提供新的工具。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nozer Singpurwalla其他文献

Nozer Singpurwalla的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nozer Singpurwalla', 18)}}的其他基金

A Group Travel Proposal for the NSF/India CDS&E Workshop
NSF/印度 CDS 团体旅行提案
  • 批准号:
    1210504
  • 财政年份:
    2012
  • 资助金额:
    $ 18.58万
  • 项目类别:
    Standard Grant
Statistical Algorithms for Threat Detection via Sensor Networks
通过传感器网络进行威胁检测的统计算法
  • 批准号:
    0915156
  • 财政年份:
    2009
  • 资助金额:
    $ 18.58万
  • 项目类别:
    Continuing Grant
Expedited Award for Novel Research: A Bayesian Perspective on Tolerancing
小说研究加急奖:贝叶斯的公差视角
  • 批准号:
    8912570
  • 财政年份:
    1989
  • 资助金额:
    $ 18.58万
  • 项目类别:
    Standard Grant
Conference of Uncertainty in Engineering Design, Washington D.C., May 10-11, 1988
工程设计不确定性会议,华盛顿特区,1988 年 5 月 10-11 日
  • 批准号:
    8722058
  • 财政年份:
    1988
  • 资助金额:
    $ 18.58万
  • 项目类别:
    Standard Grant

相似海外基金

Mathematical approach to 2 phase problem in unbounded domains and an extension of its approach to the theory of quasilinear parabolic equations
无界域中两相问题的数学方法及其对拟线性抛物型方程理论的扩展
  • 批准号:
    22H01134
  • 财政年份:
    2022
  • 资助金额:
    $ 18.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
The Problem of Legitimacy in Expert Advising and its Exacerbation Through Neoliberalism: A Case Study from the Research on Climate Mitigation
专家咨询的合法性问题及其因新自由主义而加剧:气候减缓研究的案例研究
  • 批准号:
    2752080
  • 财政年份:
    2022
  • 资助金额:
    $ 18.58万
  • 项目类别:
    Studentship
The Analysis of the Collaborative Problem Solving and its Effect for EFL Reading
英语阅读中协作解题及其效果分析
  • 批准号:
    22K00778
  • 财政年份:
    2022
  • 资助金额:
    $ 18.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Examination of auditory processing disorder as a hearing problem in autism spectrum disorders and its support
将听觉处理障碍视为自闭症谱系障碍中的听力问题的检查及其支持
  • 批准号:
    21K02683
  • 财政年份:
    2021
  • 资助金额:
    $ 18.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Damage mechanism analysis of third generation ultra-high strength steels using combining method of synchrotron X-ray and finite element simulation, and its extension to inverse problem analysis
同步辐射X射线与有限元模拟相结合的第三代超高强钢损伤机理分析及其反问题分析的推广
  • 批准号:
    20H02484
  • 财政年份:
    2020
  • 资助金额:
    $ 18.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
The Wicked Problem of Plastics and the Discourse Surrounding its Governance
塑料的邪恶问题及其治理的讨论
  • 批准号:
    AH/T008423/1
  • 财政年份:
    2020
  • 资助金额:
    $ 18.58万
  • 项目类别:
    Research Grant
Structural stability problem of real algebraic maps and its application
实代数映射的结构稳定性问题及其应用
  • 批准号:
    20K03611
  • 财政年份:
    2020
  • 资助金额:
    $ 18.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Study on Kernelization Algorithms for the Vertex Cover Problem and its Generalizations
顶点覆盖问题的核化算法及其推广研究
  • 批准号:
    20K11680
  • 财政年份:
    2020
  • 资助金额:
    $ 18.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The complexity of the constraint satisfaction problem and its variants
约束满足问题及其变体的复杂性
  • 批准号:
    RGPIN-2015-04656
  • 财政年份:
    2019
  • 资助金额:
    $ 18.58万
  • 项目类别:
    Discovery Grants Program - Individual
Problem-historical Nature and its Purposiveness
问题历史的本质及其目的性
  • 批准号:
    2324690
  • 财政年份:
    2019
  • 资助金额:
    $ 18.58万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了