Statistical Algorithms for Threat Detection via Sensor Networks

通过传感器网络进行威胁检测的统计算法

基本信息

  • 批准号:
    0915156
  • 负责人:
  • 金额:
    $ 71.62万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-01 至 2013-08-31
  • 项目状态:
    已结题

项目摘要

Threat detection (TD) means an assessment of the presence of harmful agents, biological, chemical, or nuclear. The footprint (or signatures) of such agents could be qualitative and verbal, and/or quantitative. These signatures are generated by sensors which collectively form a networked system. The architecture of such systems could be series, parallel, or hierarchical. A key feature of such signatures is that they tend to be imprecise, incomplete, and unreliable. Furthermore, the sensors could be co-operative or adversarial, the latter due to sabotage and psychological ploys. The principal investigator and his colleagues propose to articulate the mathematical underpinnings of the TD scenario, in order to integrate signatures from a multitude of sensors in a principled way. The goal is to express the presence of threats in terms of numerical probabilities. This tantamounts to integrating signatures which are filtered via distributed network structures, and are contaminated by imprecision, camouflage, and parleying. As a research topic in probability and statistics, the matter of integrating contaminated and camouflaged signatures is new. Both Bayesian and classical methods, as well as a cunning combination of the two, will be invoked. The crux of the work will entail developing meaningful likelihood functions that capture the essence of the physical and psychological issues.Current practice in intelligence and national security is to express threat in verbal and qualitative terms like possible, probable, likely, etc. Such expressions are not actionable. This research will place the threat detection scenario in a probabilistic framework so that decisive actions to mitigate threats can be taken. The work will have broader impacts in civilian applications such as oil exploration, weather prediction, medical diagnosis, and socio-cultural modeling.
威胁检测(TD)是指对生物、化学或核有害物剂存在的评估。 这些代理人的足迹(或签名)可以是定性的和口头的,和/或定量的。 这些签名由共同形成网络系统的传感器生成。 这种系统的架构可以是串联的、并联的或分层的。 这种签名的一个关键特征是它们往往是不精确、不完整和不可靠的。 此外,传感器可以是合作的或对抗的,后者是由于破坏和心理策略。 首席研究员和他的同事们建议阐明TD场景的数学基础,以便以原则性的方式整合来自众多传感器的签名。 目标是用数字概率来表示威胁的存在。 这种方法相当于整合通过分布式网络结构过滤的签名,并且被不精确,伪装和parleying污染。 作为概率统计领域的一个研究课题,污染签名与非污染签名的融合是一个新的课题。 贝叶斯和经典方法,以及两者的巧妙组合,将被调用。 这项工作的关键将需要开发有意义的可能性函数,捕捉的本质的身体和心理问题。目前的做法,在情报和国家安全是表达威胁的口头和定性的条件,如可能的,可能的,很可能的,等等,这样的表达是不可诉的。 这项研究将把威胁检测方案在概率框架,以便采取果断行动,以减轻威胁。 这项工作将在民用应用中产生更广泛的影响,如石油勘探,天气预报,医疗诊断和社会文化建模。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nozer Singpurwalla其他文献

Nozer Singpurwalla的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nozer Singpurwalla', 18)}}的其他基金

A Group Travel Proposal for the NSF/India CDS&E Workshop
NSF/印度 CDS 团体旅行提案
  • 批准号:
    1210504
  • 财政年份:
    2012
  • 资助金额:
    $ 71.62万
  • 项目类别:
    Standard Grant
The Warranty Problem: Its Statistical and Game Theoretic Aspects
保修问题:统计和博弈论方面
  • 批准号:
    9122494
  • 财政年份:
    1992
  • 资助金额:
    $ 71.62万
  • 项目类别:
    Continuing Grant
Expedited Award for Novel Research: A Bayesian Perspective on Tolerancing
小说研究加急奖:贝叶斯的公差视角
  • 批准号:
    8912570
  • 财政年份:
    1989
  • 资助金额:
    $ 71.62万
  • 项目类别:
    Standard Grant
Conference of Uncertainty in Engineering Design, Washington D.C., May 10-11, 1988
工程设计不确定性会议,华盛顿特区,1988 年 5 月 10-11 日
  • 批准号:
    8722058
  • 财政年份:
    1988
  • 资助金额:
    $ 71.62万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
  • 批准号:
    2219956
  • 财政年份:
    2023
  • 资助金额:
    $ 71.62万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
  • 批准号:
    2219904
  • 财政年份:
    2023
  • 资助金额:
    $ 71.62万
  • 项目类别:
    Standard Grant
ATD: Quantum algorithms for spatiotemporal models with applications to threat detection
ATD:时空模型的量子算法及其在威胁检测中的应用
  • 批准号:
    2319279
  • 财政年份:
    2023
  • 资助金额:
    $ 71.62万
  • 项目类别:
    Standard Grant
ATD: Algorithms for Threat Detection in Knowledge Graphs
ATD:知识图中的威胁检测算法
  • 批准号:
    2027277
  • 财政年份:
    2020
  • 资助金额:
    $ 71.62万
  • 项目类别:
    Standard Grant
ATD: Algorithms for Point Processes on Networks for Threat Detection
ATD:用于威胁检测的网络点处理算法
  • 批准号:
    1925263
  • 财政年份:
    2019
  • 资助金额:
    $ 71.62万
  • 项目类别:
    Standard Grant
ATD: Collaborative Research: Theory and Algorithms for Real-Time Threat Detection from Massive Data Streams
ATD:协作研究:海量数据流实时威胁检测的理论和算法
  • 批准号:
    1829955
  • 财政年份:
    2018
  • 资助金额:
    $ 71.62万
  • 项目类别:
    Continuing Grant
ATD: Collaborative Research: Theory and Algorithms for Real-Time Threat Detection from Massive Data Streams
ATD:协作研究:海量数据流实时威胁检测的理论和算法
  • 批准号:
    1830066
  • 财政年份:
    2018
  • 资助金额:
    $ 71.62万
  • 项目类别:
    Continuing Grant
ATD: Collaborative Research: Point Process Algorithms for Threat Detection from Heterogeneous Human Mobility and Activity Data
ATD:协作研究:用于从异构人体移动性和活动数据进行威胁检测的点处理算法
  • 批准号:
    1737996
  • 财政年份:
    2017
  • 资助金额:
    $ 71.62万
  • 项目类别:
    Continuing Grant
ATD: Collaborative Research: Point Process Algorithms for Threat Detection from Heterogeneous Human Mobility and Activity Data
ATD:协作研究:用于从异构人体移动性和活动数据进行威胁检测的点处理算法
  • 批准号:
    1737925
  • 财政年份:
    2017
  • 资助金额:
    $ 71.62万
  • 项目类别:
    Continuing Grant
ATD: Online Multiscale Algorithms for Geometric Density Estimation in High-Dimensions and Persistent Homology of Data for Improved Threat Detection
ATD:用于高维几何密度估计和数据持久同源性的在线多尺度算法,以改进威胁检测
  • 批准号:
    1756892
  • 财政年份:
    2016
  • 资助金额:
    $ 71.62万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了