U.S.-France Cooperative Research: Shape Analysis of DampingProcesses for Elastic Systems in Structural Modelling
美法合作研究:结构建模中弹性系统阻尼过程的形状分析
基本信息
- 批准号:9218323
- 负责人:
- 金额:$ 1.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1993
- 资助国家:美国
- 起止时间:1993-05-01 至 1997-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This three-year award supports U.S.-France cooperative research in applied mathematics. The investigators are Irena Lasiecka and Roberto Triggiani from the University of Virginia and J.P. Zolesio and M. Souli from the University of Nice. The investigators will utilize partial differential equations, hyperbolic equations and numerical analysis in approaching a number of problems in structural mechanics. The project focuses on elastic structures whose dynamical behavior is effected by internal damping of vibrations. The objectives are to enhance stability properties by determining the optimal shape or design of the elastic structure so that undesirable vibrations are reduced. The U.S. investigators bring to this collaboration their expertise in mathematical modelling of structural damping, optimum control and related questions and the utilization of elastic partial differential equations for determining controllability and stabilization properties. This is complemented by French expertise in shape analysis and optimization. The research has important applications in the areas of space mechanics and control.
这个为期三年的奖项支持美国-法国合作研究 在应用数学中。 调查人员是伊雷娜·拉西卡 弗吉尼亚大学的Roberto Triggiani和J. P. Zolesio和M.来自尼斯大学的Souli。 的 研究人员将利用偏微分方程,双曲 方程和数值分析, 结构力学的问题。 该项目侧重于弹性 其动力学行为受内部 振动的衰减。 目标是加强稳定 通过确定的最佳形状或设计的属性, 弹性结构,从而减少了不期望的振动。 美国调查人员为这次合作带来了他们的专业知识 在结构阻尼数学模型中, 控制及相关问题和弹性偏微分方程的应用 确定可控性的微分方程, 稳定性能 这是补充法语 形状分析和优化方面的专业知识。 这项研究 在空间力学领域的重要应用, 控制
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Irena Lasiecka其他文献
Uniform Stabilization of Navier–Stokes Equations in Critical $$L^q$$ -Based Sobolev and Besov Spaces by Finite Dimensional Interior Localized Feedback Controls
- DOI:
10.1007/s00245-019-09607-9 - 发表时间:
2019-09-25 - 期刊:
- 影响因子:1.700
- 作者:
Irena Lasiecka;Buddhika Priyasad;Roberto Triggiani - 通讯作者:
Roberto Triggiani
Finite Difference Approximation of State and Control Constrained Optimal Control Problem for System with Delay
- DOI:
10.1016/s1474-6670(17)66962-3 - 发表时间:
1977-01-01 - 期刊:
- 影响因子:
- 作者:
Irena Lasiecka - 通讯作者:
Irena Lasiecka
Convergence of Numerical Algorithms for the Approximations to Riccati Equations Arising in Smart Material Acoustic Structure Interactions
- DOI:
10.1023/a:1008610631744 - 发表时间:
1997-07-01 - 期刊:
- 影响因子:2.000
- 作者:
Erik Hendrickson;Irena Lasiecka - 通讯作者:
Irena Lasiecka
Preface: In Memory of A.V. Balakrishnan
- DOI:
10.1007/s00245-016-9351-7 - 发表时间:
2016-04-11 - 期刊:
- 影响因子:1.700
- 作者:
Alain Bensoussan;Igor Kukavica;Irena Lasiecka;Sanjoy Mitter;Roger Temam;Roberto Triggiani - 通讯作者:
Roberto Triggiani
Uniform stabilization in Besov spaces with arbitrary decay rates of the magnetohydrodynamic system by finite-dimensional interior localized static feedback controllers
- DOI:
10.1007/s40687-024-00490-7 - 发表时间:
2024-12-18 - 期刊:
- 影响因子:1.200
- 作者:
Irena Lasiecka;Buddhika Priyasad;Roberto Triggiani - 通讯作者:
Roberto Triggiani
Irena Lasiecka的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Irena Lasiecka', 18)}}的其他基金
Control of Fluid-Structure Interactions: Finite Dimensional Strategies for Flutter/Turbulence Suppression
流固耦合控制:颤振/湍流抑制的有限维策略
- 批准号:
2205508 - 财政年份:2022
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant
Collaborative Research: Promoting Success in Undergraduate Mathematics through Graduate Teaching Assistant Training
合作研究:通过研究生助教培训促进本科数学的成功
- 批准号:
1821619 - 财政年份:2018
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant
Interface Control for Systems of Strongly Coupled Partial Differential Equations
强耦合偏微分方程组的接口控制
- 批准号:
1713506 - 财政年份:2017
- 资助金额:
$ 1.02万 - 项目类别:
Continuing Grant
Control at the interface of strongly coupled partial differential equations
强耦合偏微分方程接口的控制
- 批准号:
1444215 - 财政年份:2013
- 资助金额:
$ 1.02万 - 项目类别:
Continuing Grant
Control at the interface of strongly coupled partial differential equations
强耦合偏微分方程接口的控制
- 批准号:
1108871 - 财政年份:2011
- 资助金额:
$ 1.02万 - 项目类别:
Continuing Grant
Control Problems for Strongly Coupled Non-Linear Partial Differential Equations
强耦合非线性偏微分方程的控制问题
- 批准号:
0606682 - 财政年份:2006
- 资助金额:
$ 1.02万 - 项目类别:
Continuing Grant
US-France Cooperative Research (INRIA): Control of Interactive Structures with Dynamic Shells
美法合作研究(INRIA):用动态壳控制交互结构
- 批准号:
0226961 - 财政年份:2003
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant
Control problems for systems of strongly coupled partial differential equations with variable coefficients.
具有变系数的强耦合偏微分方程组的控制问题。
- 批准号:
0104305 - 财政年份:2001
- 资助金额:
$ 1.02万 - 项目类别:
Continuing Grant
Control Problems of Systems of Strongly Coupled Partial Differential Equations
强耦合偏微分方程组的控制问题
- 批准号:
9804056 - 财政年份:1998
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant
Mathematical Sciences: Boundary Control Problems for Linear and Non-Linear Partial Differential Equations and Riccati Equations
数学科学:线性和非线性偏微分方程和 Riccati 方程的边界控制问题
- 批准号:
9504822 - 财政年份:1995
- 资助金额:
$ 1.02万 - 项目类别:
Continuing Grant
相似海外基金
IRES: U.S.-France Cooperative Research in Engineering Innovative Software Systems with Applications to Maritime Transportation Logistics
IRES:美法合作研究工程创新软件系统及其应用于海上运输物流
- 批准号:
0729792 - 财政年份:2007
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant
U.S.-France Cooperative Research (INRIA): A Semantic Foundation For C++ based IC/System Design
美法合作研究 (INRIA):基于 C 的 IC/系统设计的语义基础
- 批准号:
0554678 - 财政年份:2005
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant
U.S.-France Cooperative Research: Probing Dynamics in Open Shell Atoms and Molecules using Two Photons Experiments
美法合作研究:利用两个光子实验探测开壳原子和分子的动力学
- 批准号:
0440633 - 财政年份:2005
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant
U.S.-France Cooperative Research: Modelling and Interrogation of Cancellous Bone
美法合作研究:松质骨的建模和研究
- 批准号:
0438765 - 财政年份:2005
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant
U.S.-France Cooperative Research: Energetics and Conformational Changes of SNARE-mediated Fusion
美法合作研究:SNARE介导的融合的能量学和构象变化
- 批准号:
0437230 - 财政年份:2005
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant
U.S.-France Cooperative Research: Transcriptional and Posttranscriptional Regulation of the Sodium Pump
美法合作研究:钠泵的转录和转录后调控
- 批准号:
0340622 - 财政年份:2004
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant
U.S.-France Cooperative Research: Genetics and Chemical Ecology of Reticulitermes Termites
美法合作研究:散白蚁的遗传学和化学生态学
- 批准号:
0233238 - 财政年份:2003
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant
U.S.-France Cooperative Research: Flows of Grains Down Inclined Channels
美法合作研究:谷物沿着倾斜渠道的流动
- 批准号:
0233212 - 财政年份:2003
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant
U.S.-France Cooperative Research: Studies of Model C-H Bond and Si-H Bond Activation Processes on the Surfaces of Large[RG]n and [CH4]n Clusters
美法合作研究:大[RG]n和[CH4]n团簇表面模型C-H键和Si-H键活化过程的研究
- 批准号:
0124920 - 财政年份:2002
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant
U.S.-France Cooperative Research: Passivity Based Control of Networked Control Systems
美法合作研究:网络控制系统的无源控制
- 批准号:
0128656 - 财政年份:2002
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant