Control Problems for Strongly Coupled Non-Linear Partial Differential Equations

强耦合非线性偏微分方程的控制问题

基本信息

  • 批准号:
    0606682
  • 负责人:
  • 金额:
    $ 65万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-08-01 至 2012-07-31
  • 项目状态:
    已结题

项目摘要

The present research project aims at investigating the properties of control, optimization, stability and long-time behavior of interactive structures, which are mathematically modeled by inhomogeneous systems of strongly coupled partial differential equations with an interface. Both the single partial differential equations describing each a constitutive component of the overall structure as well as the coupling between them, may be linear or non-linear, dispersive, and oscillatory. brbr Investigation will be carried out initially on four canonical motivating classes of interactive structures. They are intended to serve as benchmark cases for the general topic of physically significant interactive and non-trivially coupled Partial Differential Equations. They are: (1) the noise reduction problem in a structural acoustic chamber, by use of 'smart material/structure' technology; (2) flutter control of a 2-dimensional wing immersed in a subsonic or supersonic 3-dimensional gas flow in aeroelasticity; (3) plasma heating and plasma confinement in the control of magnetohydrodynamics equations; (4) asymptotic suppression of turbulence in viscous incompressible fluid dynamics.
本研究项目的目的是研究相互作用结构的控制,优化,稳定性和长时间的行为,这是数学建模的非齐次系统的强耦合偏微分方程的界面。描述整个结构的每个组成部件以及它们之间的耦合的单个偏微分方程可以是线性的或非线性的、色散的和振荡的。brbr调查将首先在四个典型的互动结构激励类上进行。它们的目的是作为基准的情况下,物理上重要的互动和非平凡耦合偏微分方程的一般主题。它们分别是:(1)结构声室中的降噪问题,采用“智能材料/结构”技术;(2)二维机翼在亚音速或超音速三维气流中的气动弹性颤振控制;(3)磁流体动力学方程控制中的等离子体加热和等离子体约束;(4)粘性不可压缩流体动力学中湍流的渐近抑制。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Irena Lasiecka其他文献

Uniform Stabilization of Navier–Stokes Equations in Critical $$L^q$$ -Based Sobolev and Besov Spaces by Finite Dimensional Interior Localized Feedback Controls
  • DOI:
    10.1007/s00245-019-09607-9
  • 发表时间:
    2019-09-25
  • 期刊:
  • 影响因子:
    1.700
  • 作者:
    Irena Lasiecka;Buddhika Priyasad;Roberto Triggiani
  • 通讯作者:
    Roberto Triggiani
Finite Difference Approximation of State and Control Constrained Optimal Control Problem for System with Delay
  • DOI:
    10.1016/s1474-6670(17)66962-3
  • 发表时间:
    1977-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Irena Lasiecka
  • 通讯作者:
    Irena Lasiecka
Convergence of Numerical Algorithms for the Approximations to Riccati Equations Arising in Smart Material Acoustic Structure Interactions
Preface: In Memory of A.V. Balakrishnan
  • DOI:
    10.1007/s00245-016-9351-7
  • 发表时间:
    2016-04-11
  • 期刊:
  • 影响因子:
    1.700
  • 作者:
    Alain Bensoussan;Igor Kukavica;Irena Lasiecka;Sanjoy Mitter;Roger Temam;Roberto Triggiani
  • 通讯作者:
    Roberto Triggiani
Uniform stabilization in Besov spaces with arbitrary decay rates of the magnetohydrodynamic system by finite-dimensional interior localized static feedback controllers
  • DOI:
    10.1007/s40687-024-00490-7
  • 发表时间:
    2024-12-18
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Irena Lasiecka;Buddhika Priyasad;Roberto Triggiani
  • 通讯作者:
    Roberto Triggiani

Irena Lasiecka的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Irena Lasiecka', 18)}}的其他基金

Control of Fluid-Structure Interactions: Finite Dimensional Strategies for Flutter/Turbulence Suppression
流固耦合控制:颤振/湍流抑制的有限维策略
  • 批准号:
    2205508
  • 财政年份:
    2022
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
Collaborative Research: Promoting Success in Undergraduate Mathematics through Graduate Teaching Assistant Training
合作研究:通过研究生助教培训促进本科数学的成功
  • 批准号:
    1821619
  • 财政年份:
    2018
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
Interface Control for Systems of Strongly Coupled Partial Differential Equations
强耦合偏微分方程组的接口控制
  • 批准号:
    1713506
  • 财政年份:
    2017
  • 资助金额:
    $ 65万
  • 项目类别:
    Continuing Grant
Control at the interface of strongly coupled partial differential equations
强耦合偏微分方程接口的控制
  • 批准号:
    1444215
  • 财政年份:
    2013
  • 资助金额:
    $ 65万
  • 项目类别:
    Continuing Grant
Control at the interface of strongly coupled partial differential equations
强耦合偏微分方程接口的控制
  • 批准号:
    1108871
  • 财政年份:
    2011
  • 资助金额:
    $ 65万
  • 项目类别:
    Continuing Grant
US-France Cooperative Research (INRIA): Control of Interactive Structures with Dynamic Shells
美法合作研究(INRIA):用动态壳控制交互结构
  • 批准号:
    0226961
  • 财政年份:
    2003
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
Control problems for systems of strongly coupled partial differential equations with variable coefficients.
具有变系数的强耦合偏微分方程组的控制问题。
  • 批准号:
    0104305
  • 财政年份:
    2001
  • 资助金额:
    $ 65万
  • 项目类别:
    Continuing Grant
Control Problems of Systems of Strongly Coupled Partial Differential Equations
强耦合偏微分方程组的控制问题
  • 批准号:
    9804056
  • 财政年份:
    1998
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Boundary Control Problems for Linear and Non-Linear Partial Differential Equations and Riccati Equations
数学科学:线性和非线性偏微分方程和 Riccati 方程的边界控制问题
  • 批准号:
    9504822
  • 财政年份:
    1995
  • 资助金额:
    $ 65万
  • 项目类别:
    Continuing Grant
U.S.-France Cooperative Research: Shape Analysis of DampingProcesses for Elastic Systems in Structural Modelling
美法合作研究:结构建模中弹性系统阻尼过程的形状分析
  • 批准号:
    9218323
  • 财政年份:
    1993
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant

相似海外基金

Asymptotic analysis of boundary value problems for strongly inhomogeneous multi-layered elastic plates
强非均匀多层弹性板边值问题的渐近分析
  • 批准号:
    EP/Y021983/1
  • 财政年份:
    2024
  • 资助金额:
    $ 65万
  • 项目类别:
    Research Grant
New strongly polynomial algorithms for network optimisation problems
用于网络优化问题的新强多项式算法
  • 批准号:
    EP/M02797X/1
  • 财政年份:
    2015
  • 资助金额:
    $ 65万
  • 项目类别:
    Research Grant
Strongly correlated quantum impurity problems in non-equilibrium: from fractional quantum Hall edge stated devices to ultracold atomic systems.
非平衡中的强相关量子杂质问题:从分数量子霍尔边缘状态器件到超冷原子系统。
  • 批准号:
    246543617
  • 财政年份:
    2014
  • 资助金额:
    $ 65万
  • 项目类别:
    Heisenberg Fellowships
Dynamic Loading of Partially-Saturated Soil: an investigation in the framework of numerical mechanics of strongly coupled problems
部分饱和土的动力加载:强耦合问题数值力学框架中的研究
  • 批准号:
    117493912
  • 财政年份:
    2009
  • 资助金额:
    $ 65万
  • 项目类别:
    Research Units
String theory approach to problems of strongly coupled gauge theories
解决强耦合规范理论问题的弦理论方法
  • 批准号:
    EP/G007063/1
  • 财政年份:
    2008
  • 资助金额:
    $ 65万
  • 项目类别:
    Fellowship
Multiscale methods for nonlinear problems in strongly heterogeneous media and stiff stochastic systems
强异质介质和刚性随机系统中非线性问题的多尺度方法
  • 批准号:
    EP/E05207X/1
  • 财政年份:
    2007
  • 资助金额:
    $ 65万
  • 项目类别:
    Fellowship
Computational Problems For Interfaces With Bending Stiffness In Strongly Anisotropic Thin Films And Inhomogeneous Biomembranes
强各向异性薄膜和不均匀生物膜中具有弯曲刚度的界面的计算问题
  • 批准号:
    0612878
  • 财政年份:
    2006
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
Applications of Transportation Problems and Strongly Nonlinear Systems of Partial Differential Equations in Economics
运输问题和强非线性偏微分方程组在经济学中的应用
  • 批准号:
    0532398
  • 财政年份:
    2005
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
Control problems for systems of strongly coupled partial differential equations with variable coefficients.
具有变系数的强耦合偏微分方程组的控制问题。
  • 批准号:
    0104305
  • 财政年份:
    2001
  • 资助金额:
    $ 65万
  • 项目类别:
    Continuing Grant
Control Problems of Systems of Strongly Coupled Partial Differential Equations
强耦合偏微分方程组的控制问题
  • 批准号:
    9804056
  • 财政年份:
    1998
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了