Interface Control for Systems of Strongly Coupled Partial Differential Equations

强耦合偏微分方程组的接口控制

基本信息

  • 批准号:
    1713506
  • 负责人:
  • 金额:
    $ 32.86万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-06-01 至 2021-05-31
  • 项目状态:
    已结题

项目摘要

Interactive systems are ubiquitous in technological applications and critical for modern society. An important class of such coupled systems have components with differing dynamic properties, whose coupling occurs at the interface of the different media in which each component evolves. The role of a control action is to force the system to behave in a desired, pre-assigned way: suppressing flutter, suppressing turbulence, hitting a target, etc. One eloquent illustration is flutter in aero-elasticity, a phenomenon that may occur when a structure is subject to a surrounding gas or fluid flow. It results in a periodic-like instability that can be fatal for structural stability due to fatigue of the material, such as the collapse of the Tacoma Narrows Bridge in 1940 during strong winds. In such flow-structure interactions, the control action of flutter suppression can be used to avoid structural failure. Another illustration of control is the suppression of turbulence arising in a fluid as part of fluid-structure interaction. Examples include body fluids flowing within arterial walls or veins and motion of a solid vehicle immersed in a fluid, be it an aircraft flying in the air, a ship or a submarine moving in water, etc. Another area of interest is non-linear acoustics, in particular high intensity ultrasound, which has innumerable uses in medical and industrial technology: lithotripsy, thermotherapy, ultrasonic cleansing, detection of cracks, concealed weapon detection, etc. This project aims to extend and deepen the mathematical underpinnings of control systems for these and other important applications.The research project is focused on the study of control-theoretic issues for systems of strongly coupled partial differential equations (PDE), where the (active, passive) control action is exercised in the transmission conditions at the interface between two media. One example is a hyperbolic-like/hyperbolic interaction: a von Karman plate (displacement of an aircraft wing) sitting in the horizontal plane is immersed in, and interacts with, a 3D-gas flow which occupies the upper-half space and moves over the plate. The flow is mathematically modeled by a modified wave equation in terms of the flow potential, allowing various types of boundary conditions. Couplings occurs in each equation through the trace of the other variable. The normalized constant speed of the passing flow determines regimes: subsonic, transonic and supersonic. Mathematical studies of this system include: (i) well-posedness of various models under various types of boundary conditions; (ii) stability and attractors for the structure, to include control techniques for flutter suppression at both subsonic and supersonic regimes. Another example is the parabolic-hyperbolic interaction, which couples a fluid-gas equation inside the vessel with the full vectorial Karman (shell) dynamical equation, describing the external shell. Here again, mathematical studies of the system include (i) well-posedness and (ii) stabilization by means of stabilizing controls acting on the plate to transmit dissipation on the unstable fluid. In many acoustic applications, only the external boundary is accessible, not the interior. Control theoretic methods can also be applied to the acoustic equation, a third order (in time) PDE with either Dirichlet or Neumann boundary controls. Specific topics of study include: (i) optimal regularity from the boundary to the interior and its trace (ii) exact boundary controllability, (iii) boundary stabilization; (iv) optimal control and min-max game theory with quadratic cost functional. The research involves a diverse set of tools including non-linear functional analysis, micro-local analysis, and Riemannian geometry methods.
交互系统在技术应用中无处不在,对现代社会至关重要。一类重要的耦合系统具有具有不同动态特性的组件,其耦合发生在每个组件在其中演化的不同介质的界面上。控制动作的作用是迫使系统按照预期的、预先分配的方式运行:抑制颤振、抑制湍流、击中目标等。气动弹性中的颤振就是一个很好的例子,当结构受到周围气体或流体流动的影响时,就会出现这种现象。它会导致周期性不稳定,由于材料的疲劳,这种不稳定可能对结构稳定性造成致命的影响,例如1940年塔科马海峡大桥在强风中倒塌。在这种流-结构相互作用中,颤振抑制的控制作用可以避免结构破坏。控制的另一个例子是抑制流体中产生的湍流,作为流固相互作用的一部分。例子包括在动脉壁或静脉内流动的体液,以及浸泡在液体中的固体交通工具的运动,无论是在空中飞行的飞机,还是在水中移动的船只或潜艇等。另一个感兴趣的领域是非线性声学,特别是高强度超声波,它在医疗和工业技术中有无数的用途:碎石、热疗法、超声波清洗、裂缝检测、隐藏武器检测等。该项目旨在扩展和深化这些和其他重要应用的控制系统的数学基础。本研究项目主要研究强耦合偏微分方程(PDE)系统的控制理论问题,其中(主动、被动)控制作用是在两介质界面处的传输条件下进行的。一个例子是双曲/双曲相互作用:位于水平面上的冯·卡门板(飞机机翼的位移)沉浸在占据上半部分空间并在板上移动的3d气流中,并与之相互作用。流动的数学模型是由一个修正的波动方程,根据流动势,允许各种类型的边界条件。耦合通过其他变量的轨迹发生在每个方程中。通过流的归一化恒定速度决定了亚音速、跨音速和超音速。该系统的数学研究包括:(1)各种模型在各种边界条件下的适定性;(ii)结构的稳定性和吸引子,包括在亚音速和超音速状态下抑制颤振的控制技术。另一个例子是抛物线-双曲相互作用,它将容器内部的流体-气体方程与描述外壳的全矢量卡门(壳体)动力学方程耦合在一起。这里,系统的数学研究包括(i)适定性和(ii)稳定性,通过稳定控制作用在板上以传递不稳定流体的耗散。在许多声学应用中,只有外部边界是可访问的,而不是内部。控制理论方法也可以应用于声学方程,具有Dirichlet或Neumann边界控制的三阶(时间)PDE。具体的研究主题包括:(i)从边界到内部的最优规律性及其轨迹;(ii)精确的边界可控性;(iii)边界稳定性;(4)二次代价泛函的最优控制和最小-最大对策理论。该研究涉及多种工具,包括非线性泛函分析、微局部分析和黎曼几何方法。

项目成果

期刊论文数量(26)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Long-time dynamics of vectorial von Karman system with nonlinear thermal effects and free boundary conditions
具有非线性热效应和自由边界条件的矢量冯卡门系统的长期动力学
Uniform Stabilization of 3D Navier–Stokes Equations in Low Regularity Besov Spaces with Finite Dimensional, Tangential-Like Boundary, Localized Feedback Controllers
  • DOI:
    10.1007/s00205-021-01677-w
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    I. Lasiecka;Buddhika Priyasad;R. Triggiani
  • 通讯作者:
    I. Lasiecka;Buddhika Priyasad;R. Triggiani
Uniform stabilization of Boussinesq systems in critical \begin{document}$ \mathbf{L}^q $\end{document}-based Sobolev and Besov spaces by finite dimensional interior localized feedback controls
  • DOI:
    10.3934/dcdsb.2020187
  • 发表时间:
    2022-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    I. Lasiecka;Buddhika Priyasad;R. Triggiani
  • 通讯作者:
    I. Lasiecka;Buddhika Priyasad;R. Triggiani
Exponential decay of quasilinear Maxwell equations with interior conductivity
具有内部电导率的拟线性麦克斯韦方程的指数衰减
Reducing Drag of the Obstacle in the Channel by Boundary Control: Theory and Numerics
通过边界控制减少通道中障碍物的阻力:理论与数值
  • DOI:
    10.1016/j.ifacol.2019.08.030
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lasiecka, Irena;Szulc., Katarzyna;Zochowski, Antoni
  • 通讯作者:
    Zochowski, Antoni
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Irena Lasiecka其他文献

Uniform Stabilization of Navier–Stokes Equations in Critical $$L^q$$ -Based Sobolev and Besov Spaces by Finite Dimensional Interior Localized Feedback Controls
  • DOI:
    10.1007/s00245-019-09607-9
  • 发表时间:
    2019-09-25
  • 期刊:
  • 影响因子:
    1.700
  • 作者:
    Irena Lasiecka;Buddhika Priyasad;Roberto Triggiani
  • 通讯作者:
    Roberto Triggiani
Finite Difference Approximation of State and Control Constrained Optimal Control Problem for System with Delay
  • DOI:
    10.1016/s1474-6670(17)66962-3
  • 发表时间:
    1977-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Irena Lasiecka
  • 通讯作者:
    Irena Lasiecka
Convergence of Numerical Algorithms for the Approximations to Riccati Equations Arising in Smart Material Acoustic Structure Interactions
Attractors for Second-Order Evolution Equations with a Nonlinear Damping
Uniform stabilization in Besov spaces with arbitrary decay rates of the magnetohydrodynamic system by finite-dimensional interior localized static feedback controllers
  • DOI:
    10.1007/s40687-024-00490-7
  • 发表时间:
    2024-12-18
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Irena Lasiecka;Buddhika Priyasad;Roberto Triggiani
  • 通讯作者:
    Roberto Triggiani

Irena Lasiecka的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Irena Lasiecka', 18)}}的其他基金

Control of Fluid-Structure Interactions: Finite Dimensional Strategies for Flutter/Turbulence Suppression
流固耦合控制:颤振/湍流抑制的有限维策略
  • 批准号:
    2205508
  • 财政年份:
    2022
  • 资助金额:
    $ 32.86万
  • 项目类别:
    Standard Grant
Collaborative Research: Promoting Success in Undergraduate Mathematics through Graduate Teaching Assistant Training
合作研究:通过研究生助教培训促进本科数学的成功
  • 批准号:
    1821619
  • 财政年份:
    2018
  • 资助金额:
    $ 32.86万
  • 项目类别:
    Standard Grant
Control at the interface of strongly coupled partial differential equations
强耦合偏微分方程接口的控制
  • 批准号:
    1444215
  • 财政年份:
    2013
  • 资助金额:
    $ 32.86万
  • 项目类别:
    Continuing Grant
Control at the interface of strongly coupled partial differential equations
强耦合偏微分方程接口的控制
  • 批准号:
    1108871
  • 财政年份:
    2011
  • 资助金额:
    $ 32.86万
  • 项目类别:
    Continuing Grant
Control Problems for Strongly Coupled Non-Linear Partial Differential Equations
强耦合非线性偏微分方程的控制问题
  • 批准号:
    0606682
  • 财政年份:
    2006
  • 资助金额:
    $ 32.86万
  • 项目类别:
    Continuing Grant
US-France Cooperative Research (INRIA): Control of Interactive Structures with Dynamic Shells
美法合作研究(INRIA):用动态壳控制交互结构
  • 批准号:
    0226961
  • 财政年份:
    2003
  • 资助金额:
    $ 32.86万
  • 项目类别:
    Standard Grant
Control problems for systems of strongly coupled partial differential equations with variable coefficients.
具有变系数的强耦合偏微分方程组的控制问题。
  • 批准号:
    0104305
  • 财政年份:
    2001
  • 资助金额:
    $ 32.86万
  • 项目类别:
    Continuing Grant
Control Problems of Systems of Strongly Coupled Partial Differential Equations
强耦合偏微分方程组的控制问题
  • 批准号:
    9804056
  • 财政年份:
    1998
  • 资助金额:
    $ 32.86万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Boundary Control Problems for Linear and Non-Linear Partial Differential Equations and Riccati Equations
数学科学:线性和非线性偏微分方程和 Riccati 方程的边界控制问题
  • 批准号:
    9504822
  • 财政年份:
    1995
  • 资助金额:
    $ 32.86万
  • 项目类别:
    Continuing Grant
U.S.-France Cooperative Research: Shape Analysis of DampingProcesses for Elastic Systems in Structural Modelling
美法合作研究:结构建模中弹性系统阻尼过程的形状分析
  • 批准号:
    9218323
  • 财政年份:
    1993
  • 资助金额:
    $ 32.86万
  • 项目类别:
    Standard Grant

相似国自然基金

Cortical control of internal state in the insular cortex-claustrum region
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    25 万元
  • 项目类别:

相似海外基金

The Co-Production of Water Pollution Control Policies and Socio-Technical Systems at the Urban-Agricultural Interface
城乡结合部水污染控制政策与社会技术体系的联动
  • 批准号:
    1632572
  • 财政年份:
    2017
  • 资助金额:
    $ 32.86万
  • 项目类别:
    Standard Grant
The Co-Production of Water Pollution Control Policies and Socio-Technical Systems at the Urban-Agricultural Interface
城乡结合部水污染控制政策与社会技术体系的联动
  • 批准号:
    1749062
  • 财政年份:
    2017
  • 资助金额:
    $ 32.86万
  • 项目类别:
    Standard Grant
Study on muscle kinesthetic sense mechanism in limbs' operations with applications to driving interface control systems
四肢操作中肌肉动觉感知机制研究及其在驾驶界面控制系统中的应用
  • 批准号:
    25330321
  • 财政年份:
    2013
  • 资助金额:
    $ 32.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Mechanics and Control of Brain-Machine Interface Systems
职业:脑机接口系统的力学和控制
  • 批准号:
    0955088
  • 财政年份:
    2010
  • 资助金额:
    $ 32.86万
  • 项目类别:
    Standard Grant
User interface design for real-time control of highly multi-parametric systems
用于高度多参数系统实时控制的用户界面设计
  • 批准号:
    348377-2007
  • 财政年份:
    2009
  • 资助金额:
    $ 32.86万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
User interface design for real-time control of highly multi-parametric systems
用于高度多参数系统实时控制的用户界面设计
  • 批准号:
    348377-2007
  • 财政年份:
    2008
  • 资助金额:
    $ 32.86万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Hybrid control systems: user-interface design
混合控制系统:用户界面设计
  • 批准号:
    327387-2006
  • 财政年份:
    2008
  • 资助金额:
    $ 32.86万
  • 项目类别:
    Discovery Grants Program - Individual
User interface design for real-time control of highly multi-parametric systems
用于高度多参数系统实时控制的用户界面设计
  • 批准号:
    348377-2007
  • 财政年份:
    2007
  • 资助金额:
    $ 32.86万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Hybrid control systems: user-interface design
混合控制系统:用户界面设计
  • 批准号:
    327387-2006
  • 财政年份:
    2007
  • 资助金额:
    $ 32.86万
  • 项目类别:
    Discovery Grants Program - Individual
Hybrid control systems: user-interface design
混合控制系统:用户界面设计
  • 批准号:
    327387-2006
  • 财政年份:
    2006
  • 资助金额:
    $ 32.86万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了