Control Problems of Systems of Strongly Coupled Partial Differential Equations

强耦合偏微分方程组的控制问题

基本信息

  • 批准号:
    9804056
  • 负责人:
  • 金额:
    $ 24.47万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1998
  • 资助国家:
    美国
  • 起止时间:
    1998-07-15 至 2002-06-30
  • 项目状态:
    已结题

项目摘要

9804056LasieckaThe present proposal aims at investigating mathematical aspects, as well as control and optimization properties, of models of interactive systems, which are described by strongly coupled partial differential equations, and which are subject to boundary and point control action. These are both the mathematically most challenging and the physically most relevant cases. The systems chosen are complex and realistic enough to serve as benchmark problems for the technological applications described below. Specific issues to be examined for the entire structure, and/or a component thereof, include: (1) well-posedness and regularity of solutions; (2) exact controllability in the oscillatory case for systems such as shells; (3) uniform stability of the structure solutions as well as, in the non-linear case, a corresponding study of the asymptotic behavior; (4) optimal control theory and min-max game theory with non-definite quadratic cost, as well as robust stabilization. While in recent years these problems have reached a considerable level of maturity for single classes of dynamics - diffusive and oscillatory - their study to strongly coupled systems with components of both diffusive and/or oscillatory type is just at its infancy.Control, optimization and stability problems for dynamical systems have long played a well-recognized and critical role on a broad range of diverse applications. In recent years, the emerging technology of smart materials and structures has brought forth to the front of scientific investigation the pressing need to control, optimize and stabilize "interactive structures", whose components' dynamical behavior is governed by partial differential equations. Recent civilian and military research has convincingly demonstrated smart materials/structures to be a laboratory reality. These new structural concepts actively damp noise and vibration, suppress flutter at the trailing edges of airfoils, suppress the airborne or water borne acoustic signatures of ground vehicles, aircraft, and submarines, and reduce the stressful noise levels within them. A realistic problem of keen, present interest to both the civilian and military industry is the problem of reducing, or eliminating, the unwanted noise field in a three dimensional cabin with curved walls, modeled by shells, by means of smart materials such as piezo-electric patches or memory alloys bonded to, or embedded in, an elastic wall. When wired with an appropriate voltage (control), the resulting bending moment generated by the elastic wall is expected to produce acoustic waves that counter the unwanted noise, thus leading to their elimination.
9804056 Lasiecka本建议旨在调查数学方面,以及控制和优化性能,模型的相互作用系统,这是由强耦合偏微分方程,并受到边界和点控制行动。这些都是数学上最具挑战性和物理上最相关的情况。所选择的系统是复杂和现实的,足以作为下面描述的技术应用的基准问题。对于整个结构和/或其组成部分,要研究的具体问题包括:(1)解的适定性和正则性;(2)系统(如壳)在振荡情况下的精确能控性;(3)结构解的一致稳定性以及在非线性情况下的渐近行为的相应研究;(4)非定二次型最优控制理论和极小极大对策理论,以及鲁棒镇定。虽然近年来,这些问题已经达到了相当程度的成熟度的单类动力学-扩散和振荡-他们的研究,以强耦合系统的组件的扩散和/或振荡的类型是刚刚起步。近年来,随着智能材料与结构技术的兴起,对“交互作用结构”的控制、优化和稳定的迫切需要被提上了科学研究的前沿。“交互作用结构”的动力学行为由偏微分方程控制。最近的民用和军用研究令人信服地证明了智能材料/结构是实验室的现实。这些新的结构概念积极阻尼噪音和振动,抑制机翼后缘的颤振,抑制地面车辆,飞机和潜艇的空中或水上声学特征,并降低它们内部的压力噪音水平。民用和军用工业目前都很感兴趣的一个现实问题是减少或消除具有弯曲壁的三维舱室中不需要的噪声场的问题,该舱室由壳体模拟,通过智能材料如压电贴片或记忆合金粘结到或嵌入弹性壁中。当与适当的电压(控制)连接时,预期由弹性壁产生的所得弯曲力矩产生抵消不想要的噪声的声波,从而导致它们的消除。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Irena Lasiecka其他文献

Uniform Stabilization of Navier–Stokes Equations in Critical $$L^q$$ -Based Sobolev and Besov Spaces by Finite Dimensional Interior Localized Feedback Controls
  • DOI:
    10.1007/s00245-019-09607-9
  • 发表时间:
    2019-09-25
  • 期刊:
  • 影响因子:
    1.700
  • 作者:
    Irena Lasiecka;Buddhika Priyasad;Roberto Triggiani
  • 通讯作者:
    Roberto Triggiani
Finite Difference Approximation of State and Control Constrained Optimal Control Problem for System with Delay
  • DOI:
    10.1016/s1474-6670(17)66962-3
  • 发表时间:
    1977-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Irena Lasiecka
  • 通讯作者:
    Irena Lasiecka
Convergence of Numerical Algorithms for the Approximations to Riccati Equations Arising in Smart Material Acoustic Structure Interactions
Preface: In Memory of A.V. Balakrishnan
  • DOI:
    10.1007/s00245-016-9351-7
  • 发表时间:
    2016-04-11
  • 期刊:
  • 影响因子:
    1.700
  • 作者:
    Alain Bensoussan;Igor Kukavica;Irena Lasiecka;Sanjoy Mitter;Roger Temam;Roberto Triggiani
  • 通讯作者:
    Roberto Triggiani
Uniform stabilization in Besov spaces with arbitrary decay rates of the magnetohydrodynamic system by finite-dimensional interior localized static feedback controllers
  • DOI:
    10.1007/s40687-024-00490-7
  • 发表时间:
    2024-12-18
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Irena Lasiecka;Buddhika Priyasad;Roberto Triggiani
  • 通讯作者:
    Roberto Triggiani

Irena Lasiecka的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Irena Lasiecka', 18)}}的其他基金

Control of Fluid-Structure Interactions: Finite Dimensional Strategies for Flutter/Turbulence Suppression
流固耦合控制:颤振/湍流抑制的有限维策略
  • 批准号:
    2205508
  • 财政年份:
    2022
  • 资助金额:
    $ 24.47万
  • 项目类别:
    Standard Grant
Collaborative Research: Promoting Success in Undergraduate Mathematics through Graduate Teaching Assistant Training
合作研究:通过研究生助教培训促进本科数学的成功
  • 批准号:
    1821619
  • 财政年份:
    2018
  • 资助金额:
    $ 24.47万
  • 项目类别:
    Standard Grant
Interface Control for Systems of Strongly Coupled Partial Differential Equations
强耦合偏微分方程组的接口控制
  • 批准号:
    1713506
  • 财政年份:
    2017
  • 资助金额:
    $ 24.47万
  • 项目类别:
    Continuing Grant
Control at the interface of strongly coupled partial differential equations
强耦合偏微分方程接口的控制
  • 批准号:
    1444215
  • 财政年份:
    2013
  • 资助金额:
    $ 24.47万
  • 项目类别:
    Continuing Grant
Control at the interface of strongly coupled partial differential equations
强耦合偏微分方程接口的控制
  • 批准号:
    1108871
  • 财政年份:
    2011
  • 资助金额:
    $ 24.47万
  • 项目类别:
    Continuing Grant
Control Problems for Strongly Coupled Non-Linear Partial Differential Equations
强耦合非线性偏微分方程的控制问题
  • 批准号:
    0606682
  • 财政年份:
    2006
  • 资助金额:
    $ 24.47万
  • 项目类别:
    Continuing Grant
US-France Cooperative Research (INRIA): Control of Interactive Structures with Dynamic Shells
美法合作研究(INRIA):用动态壳控制交互结构
  • 批准号:
    0226961
  • 财政年份:
    2003
  • 资助金额:
    $ 24.47万
  • 项目类别:
    Standard Grant
Control problems for systems of strongly coupled partial differential equations with variable coefficients.
具有变系数的强耦合偏微分方程组的控制问题。
  • 批准号:
    0104305
  • 财政年份:
    2001
  • 资助金额:
    $ 24.47万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Boundary Control Problems for Linear and Non-Linear Partial Differential Equations and Riccati Equations
数学科学:线性和非线性偏微分方程和 Riccati 方程的边界控制问题
  • 批准号:
    9504822
  • 财政年份:
    1995
  • 资助金额:
    $ 24.47万
  • 项目类别:
    Continuing Grant
U.S.-France Cooperative Research: Shape Analysis of DampingProcesses for Elastic Systems in Structural Modelling
美法合作研究:结构建模中弹性系统阻尼过程的形状分析
  • 批准号:
    9218323
  • 财政年份:
    1993
  • 资助金额:
    $ 24.47万
  • 项目类别:
    Standard Grant

相似海外基金

Orthogonalization-based manipulated-variable ranking for identifying and addressing gain-conditioning problems in multivariable control systems
基于正交化的操纵变量排序,用于识别和解决多变量控制系统中的增益调节问题
  • 批准号:
    567501-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 24.47万
  • 项目类别:
    Alliance Grants
Orthogonalization-based manipulated-variable ranking for identifying and addressing gain-conditioning problems in multivariable control systems
基于正交化的操纵变量排序,用于识别和解决多变量控制系统中的增益调节问题
  • 批准号:
    567501-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 24.47万
  • 项目类别:
    Alliance Grants
Nonlinear Optimal Control for Constrained Systems based on Inverse problems of Convex Optimization
基于凸优化反问题的约束系统非线性最优控制
  • 批准号:
    17K17830
  • 财政年份:
    2017
  • 资助金额:
    $ 24.47万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
SBIR Phase I: Phage control of filamentous bacteria - A novel focused antimicrobial approach to counter microbial problems in municipal wastewater systems
SBIR 第一阶段:丝状细菌的噬菌体控制 - 一种解决城市废水系统中微生物问题的新型集中抗菌方法
  • 批准号:
    0945913
  • 财政年份:
    2010
  • 资助金额:
    $ 24.47万
  • 项目类别:
    Standard Grant
Duality, singular perturbations and numerical analysis in infinite dimensional linear programming problems related to problems of control of nonlinear dynamical systems
与非线性动力系统控制问题相关的无限维线性规划问题的对偶性、奇异摄动和数值分析
  • 批准号:
    DP0986696
  • 财政年份:
    2009
  • 资助金额:
    $ 24.47万
  • 项目类别:
    Discovery Projects
Decentralized Control Problems for Networked Systems
网络系统的分散控制问题
  • 批准号:
    DP0880301
  • 财政年份:
    2008
  • 资助金额:
    $ 24.47万
  • 项目类别:
    Discovery Projects
Numerical Algorithms for Solving Convex Optimization Problems Arising in Systems and Control Theory
解决系统和控制理论中出现的凸优化问题的数值算法
  • 批准号:
    DP0450539
  • 财政年份:
    2004
  • 资助金额:
    $ 24.47万
  • 项目类别:
    Discovery Projects
Mathematical, logical and computational foundations of hybrid control systems, and their application to design and synthesis problems in control engineering
混合控制系统的数学、逻辑和计算基础及其在控制工程设计和综合问题中的应用
  • 批准号:
    DP0208553
  • 财政年份:
    2003
  • 资助金额:
    $ 24.47万
  • 项目类别:
    Discovery Projects
Mathematical, logical and computational foundations of hybrid control systems, and their application to design and synthesis problems in control engineering
混合控制系统的数学、逻辑和计算基础及其在控制工程设计和综合问题中的应用
  • 批准号:
    ARC : DP0208553
  • 财政年份:
    2003
  • 资助金额:
    $ 24.47万
  • 项目类别:
    Discovery Projects
US-Turkey Cooperative Research: Semi-Analytical Treatments of Nonlinear Stochastic Dynamical Systems with Application to Control Problems
美国-土耳其合作研究:非线性随机动力系统的半解析处理及其在控制问题中的应用
  • 批准号:
    0217453
  • 财政年份:
    2002
  • 资助金额:
    $ 24.47万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了