Mathematical Sciences: Nonlinear Partial Differential Equations with Applications to Phase Transitions, Front Propagation and Mechanics

数学科学:非线性偏微分方程及其在相变、前沿传播和力学中的应用

基本信息

  • 批准号:
    9403412
  • 负责人:
  • 金额:
    $ 14.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1994
  • 资助国家:
    美国
  • 起止时间:
    1994-07-01 至 1998-06-30
  • 项目状态:
    已结题

项目摘要

Souganidis 9403412 Work supported by this grant covers a broad range of problems arising in the areas of hyperbolic and parabolic nonlinear partial differential equations. Three primary themes will be emphasized. First, work will be done on the kinetic theory of conservation laws. The goal is to obtain new regularity and compactness results for systems of conservationlaws, using a kinetic type formulation/approximation for these systems. Second, studies will be made on first- and second-order fully nonlinear degenerate elliptic and parabolic equations. The emphasis is on the analysis of discontinuous control problems, on proving convergence, on obtaining error estimates for numerical schemes and finally, on studying several issues regarding the regularity and uniqueness of weak solutions. Lastly, work will be done on generalized front propagation and phase transitions. Much of the focus will be on studying the regularity of moving fronts past their singularities as well as the theory of phase transitions. The latter includes singular limits of reaction-diffusion equations and systems, macroscopic (hydrodynamic) limits of particle systems and large scale front dynamics for turbulent combustion. Partial differential equations form a basis for mathematical modeling of the physical world. The role of mathematical analysis is not so much to create the equations as it is to provide qualitative and quantitative information about the solutions. This may include answers to questions about uniqueness, smoothness and growth. In addition, analysis often develops methods for approximation of solutions and estimates on the accuracy of these approximations. ***
苏甘兰9403412 这项资助支持的工作涵盖了双曲和抛物非线性偏微分方程领域出现的广泛问题。 将强调三个主要主题。 首先,我们要研究守恒定律的动力学理论。 我们的目标是获得新的conservationlaws系统的规律性和紧凑性的结果,使用这些系统的动力学型配方/近似。 第二,研究一阶和二阶完全非线性退化椭圆和抛物方程。 重点是不连续控制问题的分析,证明收敛性,获得误差估计的数值计划,最后,研究几个问题的正则性和唯一性的弱解。 最后,工作将在广义前传播和相变。大部分的重点将是研究移动前沿过去的奇点以及相变理论的规律性。 后者包括反应扩散方程和系统的奇异极限、颗粒系统的宏观(流体动力学)极限和湍流燃烧的大尺度前沿动力学。 偏微分方程是物理世界数学建模的基础。 数学分析的作用与其说是建立方程,不如说是提供关于解的定性和定量信息。 这可能包括关于独特性,平滑性和增长的问题的答案。 此外,分析经常发展出解的近似方法和对这些近似的准确性的估计。 ***

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Panagiotis Souganidis其他文献

In Memory of Andrew J. Majda Bjorn Engquist, Panagiotis Souganidis, Samuel N. Stechmann, and Vlad Vicol
纪念 Andrew J. Majda Bjorn Engquist、Panagiotis Souganidis、Samuel N. Stechmann 和 Vlad Vicol
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bjorn Engquist;Panagiotis Souganidis;S. Stechmann;V. Vicol
  • 通讯作者:
    V. Vicol

Panagiotis Souganidis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Panagiotis Souganidis', 18)}}的其他基金

Nonlinear Partial Differential Equations and Applications
非线性偏微分方程及其应用
  • 批准号:
    2153822
  • 财政年份:
    2022
  • 资助金额:
    $ 14.1万
  • 项目类别:
    Standard Grant
Nonlinear Partial Differential Equations and Applications
非线性偏微分方程及其应用
  • 批准号:
    1900599
  • 财政年份:
    2019
  • 资助金额:
    $ 14.1万
  • 项目类别:
    Continuing Grant
Nonlinear Partial Differential Equations and Applications
非线性偏微分方程及其应用
  • 批准号:
    1600129
  • 财政年份:
    2016
  • 资助金额:
    $ 14.1万
  • 项目类别:
    Continuing Grant
Nonlinear Partial Differential Equations and Applications
非线性偏微分方程及其应用
  • 批准号:
    1266383
  • 财政年份:
    2013
  • 资助金额:
    $ 14.1万
  • 项目类别:
    Continuing Grant
RTG: Analysis and Differential Equations
RTG:分析和微分方程
  • 批准号:
    1246999
  • 财政年份:
    2013
  • 资助金额:
    $ 14.1万
  • 项目类别:
    Continuing Grant
EMSW21-RTG: Analysis and Differential Equations
EMSW21-RTG:分析和微分方程
  • 批准号:
    1044944
  • 财政年份:
    2011
  • 资助金额:
    $ 14.1万
  • 项目类别:
    Standard Grant
Nonlinear Partial Differential Equations and Applications
非线性偏微分方程及其应用
  • 批准号:
    0901802
  • 财政年份:
    2009
  • 资助金额:
    $ 14.1万
  • 项目类别:
    Continuing Grant
Nonlinear Partial Differential Equations and Applications
非线性偏微分方程及其应用
  • 批准号:
    0902164
  • 财政年份:
    2008
  • 资助金额:
    $ 14.1万
  • 项目类别:
    Continuing Grant
Nonlinear Partial Differential Equations and Applications
非线性偏微分方程及其应用
  • 批准号:
    0555826
  • 财政年份:
    2006
  • 资助金额:
    $ 14.1万
  • 项目类别:
    Continuing Grant
Nonlinear partial differential equations and applications
非线性偏微分方程及其应用
  • 批准号:
    0244787
  • 财政年份:
    2003
  • 资助金额:
    $ 14.1万
  • 项目类别:
    Standard Grant

相似国自然基金

Handbook of the Mathematics of the Arts and Sciences的中文翻译
  • 批准号:
    12226504
  • 批准年份:
    2022
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
SCIENCE CHINA: Earth Sciences
  • 批准号:
    41224003
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21224005
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Information Sciences
  • 批准号:
    61224002
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51224001
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21024806
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
  • 批准号:
    81024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
  • 批准号:
    41024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

NSF/CBMS Regional Conference in the Mathematical Sciences - The Global Behavior of Solutions to Critical Nonlinear Wave Equations
NSF/CBMS 数学科学区域会议 - 临界非线性波动方程解的全局行为
  • 批准号:
    1240744
  • 财政年份:
    2012
  • 资助金额:
    $ 14.1万
  • 项目类别:
    Standard Grant
CBMS Regional Conference in the Mathematical Sciences - Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis - Spring 2010
CBMS 数学科学区域会议 - 非线性水波及其在波流相互作用和海啸中的应用 - 2010 年春季
  • 批准号:
    0938266
  • 财政年份:
    2010
  • 资助金额:
    $ 14.1万
  • 项目类别:
    Standard Grant
CBMS Regional Conference in the Mathematical Sciences - Numerical Methods for Nonlinear Elliptic Equations - Spring 2007
CBMS 数学科学区域会议 - 非线性椭圆方程的数值方法 - 2007 年春季
  • 批准号:
    0630571
  • 财政年份:
    2007
  • 资助金额:
    $ 14.1万
  • 项目类别:
    Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences: Nonlinear Dispersive and Wave Equations
NSF/CBMS 数学科学区域会议:非线性色散和波动方程
  • 批准号:
    0440945
  • 财政年份:
    2005
  • 资助金额:
    $ 14.1万
  • 项目类别:
    Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences: Fully Nonlinear Equations in Geometry
NSF/CBMS 数学科学区域会议:几何中的完全非线性方程
  • 批准号:
    0225735
  • 财政年份:
    2003
  • 资助金额:
    $ 14.1万
  • 项目类别:
    Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences - Mathematical Methods in Nonlinear Wave Propagation - May 13-17, 2002
NSF/CBMS 数学科学区域会议 - 非线性波传播的数学方法 - 2002 年 5 月 13-17 日
  • 批准号:
    0122208
  • 财政年份:
    2002
  • 资助金额:
    $ 14.1万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Nonlinear Partial Differential Equations & Their Applications to Evolving Surfaces, Phase Transitions & Stochastic Control
数学科学:非线性偏微分方程
  • 批准号:
    9817525
  • 财政年份:
    1998
  • 资助金额:
    $ 14.1万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Nonlinear Elliptic Equations in Differential Geometry
数学科学:微分几何中的非线性椭圆方程
  • 批准号:
    9704861
  • 财政年份:
    1997
  • 资助金额:
    $ 14.1万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Interface Dynamics and Renormalization Methods for Nonlinear Systems of Equations
数学科学:非线性方程组的界面动力学和重整化方法
  • 批准号:
    9703530
  • 财政年份:
    1997
  • 资助金额:
    $ 14.1万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Chaos-Integrability Transition in Nonlinear Dynamical Systems: Exponental Asymptotics Approach
数学科学:非线性动力系统中的混沌可积性转变:指数渐近方法
  • 批准号:
    9796164
  • 财政年份:
    1997
  • 资助金额:
    $ 14.1万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了