Mathematical Sciences: Sequential Imputations and Gibbs Sampling: Combinations, Comparisons, and Applications

数学科学:序贯插补和吉布斯抽样:组合、比较和应用

基本信息

  • 批准号:
    9404344
  • 负责人:
  • 金额:
    $ 5.59万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1994
  • 资助国家:
    美国
  • 起止时间:
    1994-08-01 至 1997-07-31
  • 项目状态:
    已结题

项目摘要

Liu 9404344 The method of sequential imputation (henceforth, SI) introduced in Kong, Liu and Wong (1994) is a special way of conducting multiple imputations in treating missing data problems and has shown potential in providing efficient computational methods for some difficult problems in genetic linkage analysis (e.g., Kong et. al. 1993; Irwin, Cox and Kong 1993). The method is generally applicable when the corresponding complete data (Bayesian) predictive distributions are easy and is especially useful when data are collected sequentially. The Gibbs sampler is a recently popular tool for sampling from the Bayesian posterior distributions to facilitate inference. The proposed research targets at comparing the relative merits of the two methods and combining the two methods in some applications. In the first project, the SI method is applied to attack the blind deconvolution problem in digital communication, where it is assumed that the observed signals are an unknown (thus blind) linear combination of discrete input signals. A new computationally efficient algorithm for blind signal restorations results from combining the Gibbs sampler and the SI method. The second project is concerned with nonparametric hierarchical Bayesian analysis. Both the Gibbs sampler and the SI are applied to conduct sensitivity analysis and hierarchical analysis. In doing these, some theoretical understanding of the mathematical properties of a Dirichlet process is necessary. As an application, the Bayesian nonparametric method and the SI procedure are also proposed to address the problem of estimating human fecundability, or the per-cycle probability of a recognizable conception. The third project contains some ideas on how to use multiply imputed data sets more efficiently. A "split sampling" method is proposed to hybrid the jointly imputed complete data and then to adjust by using importance weights. This will result in a more efficient estimator, called "cross-match" estimate, of the quantity of interest. T he proposed research targets at comparing two novel Monte Carlo simulation methods, the sequential imputation and the Gibbs sampler, for Bayesian statistical analysis, and applying the two methods to several important problems. The first problem to attack is one in digital comunication, called "blind deconvolution." It has many applications in, for example, seismology, underwater acoustics, and multipoint network. We plan to use a complete probabilistic model to describe the system and apply the aforementioned Monte Carlo methods to overcome computational difficulties. Another application is the estimation of human fecundability, or the per-cycle probability of a recognizable conception. As there is considerable variability among couples in their waiting times to pregnancy, previous work has focused on parametric models to account for this heterogeneity and to estimate the population distribution of fecundability. We propose an alternative approach that does not require that the distribution follow a particular parametric form. One of the major difficulty in our approach is computational. The new Monte Carlo methods can be suitably applied. This type of "Bayesian nonparametric problem" has long been a topic for theoretical statisticians. Recent development of novel Monte Carlo methods in computation boomed its applicability. Our final project contains some ideas on how to use Monte Carlo samples more efficiently. It has long been recognized that our computational ability is directly linked to our theoretical thinking. The new computational methods presents us many interesting theoretical questions. We plan to study some of these questions, one of which is concerned with the relative efficiencies and mathematical properties of the two methods, another is concerned with how we can make better use of the samples obtained from Monte Carlo simulations.
刘9404344 Kong,Liu和Wong(1994)提出的序贯插补方法(以下简称SI)是处理缺失数据问题的一种特殊的多重插补方法,它在解决遗传连锁分析中的一些难题(如:Kong et.等,1993;欧文,考克斯和孔,1993)。当相应的完整数据(贝叶斯)预测分布很容易时,该方法通常适用,并且当数据按顺序收集时特别有用。吉布斯抽样器是最近流行的一种工具,用于从贝叶斯后验分布中进行抽样,以便于推断。本文的研究目标是比较这两种方法的优缺点,并在某些应用中将这两种方法结合起来。在第一个项目中,SI方法被应用于解决数字通信中的盲反卷积问题,其中假设观测信号是离散输入信号的未知(因此是盲的)线性组合。将Gibbs采样器和SI方法相结合,提出了一种新的计算效率高的盲信号处理算法。第二个项目是关于非参数层次贝叶斯分析。吉布斯抽样和SI都被用来进行敏感性分析和层次分析。在做这些的时候,有必要对狄利克雷过程的数学性质有一些理论上的理解。作为应用,贝叶斯非参数方法和SI程序也提出了解决问题的估计人类的生育能力,或每个周期的概率可识别的概念。第三个项目载有关于如何更有效地使用多重估算数据集的一些想法。提出了一种“分裂抽样”方法,对联合插补的完全数据进行混合,然后利用重要性权重进行调整。这将导致一个更有效的估计,称为“交叉匹配”估计,感兴趣的数量。 提出了研究目标,即比较贝叶斯统计分析中两种新的蒙特卡罗模拟方法--序贯插补法和吉布斯抽样法,并将这两种方法应用于几个重要问题。第一个要解决的问题是数字通信中的一个问题,称为“盲解卷积”。“它在地震学、水下声学和多点网络等方面有许多应用。我们计划使用一个完整的概率模型来描述系统,并应用上述蒙特卡罗方法来克服计算困难。另一个应用是估计人类的生育能力,或每个周期的概率可识别的概念。由于夫妇之间有相当大的差异,在他们的等待时间怀孕,以前的工作集中在参数模型来解释这种异质性,并估计人口分布的生育能力。我们提出了一种替代方法,不要求分布遵循特定的参数形式。在我们的方法的主要困难之一是计算。新的蒙特卡罗方法可以适当地应用。这种类型的“贝叶斯非参数问题”长期以来一直是理论统计学家的主题。新的蒙特卡罗方法在计算中的发展,使其适用性大大增强。我们的最终项目包含了一些关于如何更有效地使用蒙特卡罗样本的想法。人们早就认识到,我们的计算能力与我们的理论思维直接相关。新的计算方法给我们提出了许多有趣的理论问题。我们计划研究其中的一些问题,其中之一是关于这两种方法的相对效率和数学性质,另一个是关于我们如何更好地利用从Monte Carlo模拟中获得的样本。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jun Liu其他文献

Tolerance Simulation of Thin-walled C-section Composite Beam Assembling with Small Displacement Torsor Model
小位移扭转模型薄壁剖腹组合梁装配公差模拟
  • DOI:
    10.1016/j.procir.2016.02.015
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hua Wang;Jun Liu
  • 通讯作者:
    Jun Liu
The genetic susceptibility analysis of TAAR1 rs8192620 to methamphetamine and heroin abuse and its role in impulsivity
TAAR1 rs8192620对甲基苯丙胺和海洛因滥用的遗传易感性分析及其在冲动中的作用
Propagation of Airy beams in a close-Λ electromagnetically induced transparency system
艾里光束在近距离电磁感应透明系统中的传播
  • DOI:
    10.1016/j.optcom.2015.02.001
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Fengjuan Ye;Liyun Zhang;Feiran Wang;Yongming Yang;Ya Yu;Jun Liu;Dong Wei;Pei Zhang;Hong Gao;Fuli Li
  • 通讯作者:
    Fuli Li
Effect of polymer donor aggregation on the active layer morphology of amorphous polymer acceptor-based all-polymer solar cells
聚合物供体聚集对非晶聚合物受体基全聚合物太阳能电池活性层形貌的影响
  • DOI:
    10.1039/c9tc06668c
  • 发表时间:
    2020-04
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Lu Zhang;Zicheng Ding;Ruyan Zhao;Jirui Feng;Wei Ma;Jun Liu;Lixiang Wang
  • 通讯作者:
    Lixiang Wang
Numerical Simulation of Fluid-Structure Interaction of D-shape Iced Conductor
D形覆冰导体流固耦合数值模拟
  • DOI:
    10.13052/ejcm1958-5829.2832
  • 发表时间:
    2019-08
  • 期刊:
  • 影响因子:
    1.2
  • 作者:
    Yi You;Zhitao Yan;Xiaochun Nie;Xiaogang Yang;Wensheng Li;Cheng He;Jun Liu
  • 通讯作者:
    Jun Liu

Jun Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jun Liu', 18)}}的其他基金

REU Site: Molecular Biology and Genetics of Cell Signaling
REU 网站:细胞信号传导的分子生物学和遗传学
  • 批准号:
    2349577
  • 财政年份:
    2024
  • 资助金额:
    $ 5.59万
  • 项目类别:
    Standard Grant
SCC-PG: Building a smart and connected rural community for improved healthcare access through the deployment of integrated mobility solutions
SCC-PG:通过部署集成移动解决方案,建设智能互联的农村社区,改善医疗保健服务
  • 批准号:
    2303284
  • 财政年份:
    2023
  • 资助金额:
    $ 5.59万
  • 项目类别:
    Standard Grant
Collaborative Research: Bayesian and Semi-Bayesian Methods for Detecting Relationships in High Dimensions
合作研究:用于检测高维关系的贝叶斯和半贝叶斯方法
  • 批准号:
    2015411
  • 财政年份:
    2020
  • 资助金额:
    $ 5.59万
  • 项目类别:
    Standard Grant
Domain-Engineering Enabled Thermal Switching in Ferroelectric Materials
领域工程支持铁电材料中的热开关
  • 批准号:
    2011978
  • 财政年份:
    2020
  • 资助金额:
    $ 5.59万
  • 项目类别:
    Continuing Grant
REU Site: Molecular Biology and Genetics of Cell Signaling
REU 网站:细胞信号传导的分子生物学和遗传学
  • 批准号:
    1950247
  • 财政年份:
    2020
  • 资助金额:
    $ 5.59万
  • 项目类别:
    Standard Grant
CAREER: Pushing the Lower Limit of Thermal Conductivity in Layered Materials
事业:突破层状材料导热率的下限
  • 批准号:
    1943813
  • 财政年份:
    2020
  • 资助金额:
    $ 5.59万
  • 项目类别:
    Continuing Grant
Travel Support for Student Participation at the 2019 ASME-IMECE Micro and Nano Technology Forum; Salt Lake City, Utah; November 10-14, 2019
为学生参加2019 ASME-IMECE微纳米技术论坛提供差旅支持;
  • 批准号:
    2000224
  • 财政年份:
    2019
  • 资助金额:
    $ 5.59万
  • 项目类别:
    Standard Grant
Collaborative Research: Novel Statistical Tools for Metagenomics and Metabolomics Data
合作研究:宏基因组学和代谢组学数据的新型统计工具
  • 批准号:
    1903139
  • 财政年份:
    2019
  • 资助金额:
    $ 5.59万
  • 项目类别:
    Continuing Grant
Collaborative Research: Theoretical and Methodological Frameworks for Causal Inference of Peer Effects
合作研究:同伴效应因果推断的理论和方法框架
  • 批准号:
    1712714
  • 财政年份:
    2017
  • 资助金额:
    $ 5.59万
  • 项目类别:
    Standard Grant
Variable Selection via Inverse Modeling for Detecting Nonlinear Relationships
通过逆向建模进行变量选择以检测非线性关系
  • 批准号:
    1613035
  • 财政年份:
    2016
  • 资助金额:
    $ 5.59万
  • 项目类别:
    Continuing Grant

相似国自然基金

Handbook of the Mathematics of the Arts and Sciences的中文翻译
  • 批准号:
    12226504
  • 批准年份:
    2022
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
SCIENCE CHINA: Earth Sciences
  • 批准号:
    41224003
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21224005
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Information Sciences
  • 批准号:
    61224002
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51224001
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
  • 批准号:
    81024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21024806
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
  • 批准号:
    41024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Mathematical Sciences: Sequential Imputations and Gibbs Sampling: Combinations, Comparisons, and Applications
数学科学:序贯插补和吉布斯抽样:组合、比较和应用
  • 批准号:
    9596096
  • 财政年份:
    1995
  • 资助金额:
    $ 5.59万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Computationally Aggressive Approaches to Sequential Design
数学科学:顺序设计的计算积极方法
  • 批准号:
    9504980
  • 财政年份:
    1995
  • 资助金额:
    $ 5.59万
  • 项目类别:
    Standard Grant
Mathematical Sciences Sequential Summer Institute for High School Mathematics Teachers
高中数学教师数学科学连续暑期学院
  • 批准号:
    9353513
  • 财政年份:
    1994
  • 资助金额:
    $ 5.59万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Non Parametric Inference and Sequential Design
数学科学:非参数推理和顺序设计
  • 批准号:
    9203357
  • 财政年份:
    1992
  • 资助金额:
    $ 5.59万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Statistical Issues in Molecular Biology, Sequential Analysis and Regression with Missing Explanatory Variables
数学科学:分子生物学中的统计问题、缺失解释变量的序贯分析和回归
  • 批准号:
    9104990
  • 财政年份:
    1991
  • 资助金额:
    $ 5.59万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Sequential Experimentation, Regression Analysis, and Related Topics in Probability
数学科学:序贯实验、回归分析和概率相关主题
  • 批准号:
    9104432
  • 财政年份:
    1991
  • 资助金额:
    $ 5.59万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Assessment of Sequential Probabilistic Forecasting Procedures
数学科学:顺序概率预测程序的评估
  • 批准号:
    9023147
  • 财政年份:
    1990
  • 资助金额:
    $ 5.59万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Research in Sequential Design, Optimal Stopping and Survival Analysis
数学科学:顺序设计、最优停止和生存分析研究
  • 批准号:
    8914328
  • 财政年份:
    1989
  • 资助金额:
    $ 5.59万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Assessment of Sequential Probabilistic Forecasting Procedures
数学科学:顺序概率预测程序的评估
  • 批准号:
    8814094
  • 财政年份:
    1989
  • 资助金额:
    $ 5.59万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Sequential Sampling Designs
数学科学:顺序抽样设计
  • 批准号:
    8910558
  • 财政年份:
    1989
  • 资助金额:
    $ 5.59万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了