Mathematical Sciences: Optimality Conditions and Algorithm Covergence Behavior for Optimal Control Problems
数学科学:最优控制问题的最优性条件和算法覆盖行为
基本信息
- 批准号:9500908
- 负责人:
- 金额:$ 10.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1995
- 资助国家:美国
- 起止时间:1995-06-01 至 1998-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9500908 Dunn Optimal control problems are often naturally formulated as specially structured mathematical programs in infinite-dimensional function spaces. In such cases, a study of algorithms for the limiting infinite-dimensional programs can predict the behavior of standard computational schemes that are actually implemented in approximating finite-dimensional spaces, and can also suggest new algorithms that have no counterparts in the standard methodology for finite-dimensional mathematical programs. In particular, recent studies have shown that standard nonlinear programming algorithms are best suited to optimal control problems with Hamiltonians that are uniformly convex in the control input vector, while other optimal control problems may require strong variation methods based on the inherently infinite-dimensional necessary condition of Pontryagin. The proposed investigation has the following immediate objectives: (i) to establish the convergence properties of Newtonian projection methods in Chebychev norm neighborhoods and root-mean-square neighborhoods of control functions that satisfy recently developed local optimality sufficient conditions for nonconvex nonquadratic constrained input regulator problems; (ii) to extend the analysis in (i) to hybrid algorithms that employ Newtonian projection and Lagrangian augmentation techniques for regulator problems with control variable and state variable constraints; (iii) to establish the convergence properties of strong variation methods in root-mean-square neighborhoods of control functions satisfying sharp local optimality sufficient conditions in the root-mean-square norm for optimal control problems with Hamiltonians that are not convex in the control input vector; (iv) to corroborate the predictions of the infinite dimensional convergence analyses in (i)--(iii) for approximate finite dimensional computations on fixed and nested grids. Optimal control problems arise in aircraft and spacecraft trajectory calcula tions, nuclear and chemical reactor control, structural and aerodynamic design, management of ecological systems, and many other applications. In the generic optimal control problem, a large number of control variables (forces, voltages, temperatures, etc.) are chosen at various points in time and space to bring some physical system into a desired state, and to accomplish this at the lowest possible cost (manuever duration, fuel or power consumption, etc.). Control and state variable values are also typically constrained by hardware or safety considerations, and state transitions are often governed by complicated systems of ordinary or partial differential equations. The associated optimization task is therefore demanding, and requires algorithms that effectively exploit control problem structure in the computation of their successive approximations, and also exhibit good global and local convergence characteristics for the problems in question. In broad terms, the goal of the proposed investigation is to understand which algorithm types are most effective for a given problem structure in the context of optimal control. ***
最优控制问题通常被自然地表述为无限维函数空间中特殊结构的数学程序。在这种情况下,研究极限无限维程序的算法可以预测在近似有限维空间中实际实现的标准计算方案的行为,并且还可以提出在有限维数学程序的标准方法中没有对应的新算法。特别是,最近的研究表明,标准非线性规划算法最适合于控制输入向量中哈密顿量为一致凸的最优控制问题,而其他最优控制问题可能需要基于固有无限维庞特里亚金必要条件的强变分方法。提出的研究有以下直接目标:(i)建立牛顿投影方法在控制函数的Chebychev范数邻域和根均方邻域的收敛性,这些邻域满足最近发展的非凸非二次约束输入调节器问题的局部最优性充分条件;(ii)将(i)中的分析扩展到混合算法,该算法采用牛顿投影和拉格朗日增广技术来解决具有控制变量和状态变量约束的调节器问题;(iii)对于控制输入向量中具有非凸哈密顿量的最优控制问题,在满足尖锐局部最优性的根均方范数的根均方域内,建立了强变分方法的收敛性;(iv)证实(i)- (iii)中无限维收敛分析的预测,用于固定网格和嵌套网格的近似有限维计算。最优控制问题出现在飞机和航天器轨道计算、核和化学反应堆控制、结构和气动设计、生态系统管理以及许多其他应用中。在一般的最优控制问题中,在不同的时间和空间点上选择大量的控制变量(力、电压、温度等),使某些物理系统进入期望的状态,并以尽可能低的成本(操纵时间、燃料或功率消耗等)完成这一任务。控制和状态变量值通常也受到硬件或安全考虑的约束,状态转换通常由复杂的常微分方程或偏微分方程系统控制。因此,相关的优化任务是苛刻的,并且要求算法在计算其连续逼近时有效地利用控制问题结构,并且对所讨论的问题表现出良好的全局和局部收敛特性。从广义上讲,所提出的研究的目标是了解在最优控制的背景下,哪种算法类型对给定的问题结构最有效。***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joseph Dunn其他文献
Multi-ethnic heterozygote frequencies of cancer susceptibility genes to inform counseling of reproductive risk
癌症易感基因的多民族杂合子频率,为生殖风险咨询提供信息
- DOI:
10.1016/j.gim.2024.101246 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:6.200
- 作者:
Jacquelyn Powers;Heather Wachtel;Erica Trujillo;Heena Desai;Ryan Hausler;Laura Conway;Bradley Wubbenhorst;Anurag Verma;Shefali S. Verma;Yuki Bradford;Ashlei Brock;Stephanie DerOhannessian;Scott Dudek;Joseph Dunn;Theodore Drivas;Ned Haubein;Khadijah Hu-Sain;Renae Judy;Ashley Kloter;Yi-An Ko;Kara N. Maxwell - 通讯作者:
Kara N. Maxwell
<em>PMS2CL</em> interference leading to erroneous identification of a pathogenic <em>PMS2</em> variant in Black patients
- DOI:
10.1016/j.gimo.2024.101858 - 发表时间:
2024-01-01 - 期刊:
- 影响因子:
- 作者:
Jacqueline Cappadocia;Lisa B. Aiello;Michael J. Kelley;Bryson W. Katona;Kara N. Maxwell;Anurag Verma;Shefali S. Verma;Yuki Bradford;Ashlei Brock;Stephanie DerOhannessian;Scott Dudek;Joseph Dunn;Theodore Drivas;Ned Haubein;Khadijah Hu-Sain;Renae Judy;Ashley Kloter;Yi-An Ko;Meghan Livingstone;Linda Morrel - 通讯作者:
Linda Morrel
Percutaneous vertebroplasty in the management of a patient with malignant pain and associated osteolytic compression fractures
- DOI:
10.1007/s11916-002-0062-1 - 发表时间:
2002-11-01 - 期刊:
- 影响因子:3.500
- 作者:
Joseph Dunn - 通讯作者:
Joseph Dunn
Joseph Dunn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joseph Dunn', 18)}}的其他基金
Analysis and Computation for Optimal Control Problems with Pointwise State and Control Constraints
具有逐点状态和控制约束的最优控制问题的分析与计算
- 批准号:
9803755 - 财政年份:1998
- 资助金额:
$ 10.45万 - 项目类别:
Standard Grant
Mathematical Sciences: Gradient Projection Methods, Lagrangian Augmentation Techniques, and Sufficient Conditions for Optimal Control Problems
数学科学:梯度投影方法、拉格朗日增广技术以及最优控制问题的充分条件
- 批准号:
9205240 - 财政年份:1992
- 资助金额:
$ 10.45万 - 项目类别:
Continuing Grant
Mathematical Sciences: Gradient Projection and Lagrangian Augmentation Methods for Optimal Control and Other Large Scale Nonlinear Programs
数学科学:用于最优控制和其他大规模非线性程序的梯度投影和拉格朗日增强方法
- 批准号:
9002848 - 财政年份:1990
- 资助金额:
$ 10.45万 - 项目类别:
Continuing Grant
Mathematical Sciences: Projected Newton Methods for Optimal Control Problems and Other Large-Scale Structured Nonlinear Programs
数学科学:最优控制问题和其他大规模结构化非线性程序的投影牛顿法
- 批准号:
8702929 - 财政年份:1987
- 资助金额:
$ 10.45万 - 项目类别:
Continuing Grant
Mathematical Sciences: Projected Quasi-Newton Methods in Cartesian Products of Simple Sets
数学科学:简单集笛卡尔积的投影拟牛顿法
- 批准号:
8503746 - 财政年份:1985
- 资助金额:
$ 10.45万 - 项目类别:
Continuing Grant
The Behavior of Iterative Minimizing Schemes Near Singular And Nonsingular Optimal Controls
奇异和非奇异最优控制附近的迭代最小化方案的行为
- 批准号:
8005958 - 财政年份:1980
- 资助金额:
$ 10.45万 - 项目类别:
Continuing Grant
The Behavior of Iterative Minimizing Schemes Near Singular And Nonsingular Optimal Controls
奇异和非奇异最优控制附近的迭代最小化方案的行为
- 批准号:
7803385 - 财政年份:1978
- 资助金额:
$ 10.45万 - 项目类别:
Standard Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
REU Site: Bigelow Laboratory for Ocean Sciences - Undergraduate Research Experience in the Gulf of Maine and the World Ocean
REU 站点:毕格罗海洋科学实验室 - 缅因湾和世界海洋的本科生研究经验
- 批准号:
2349230 - 财政年份:2024
- 资助金额:
$ 10.45万 - 项目类别:
Continuing Grant
Research Infrastructure: Mid-scale RI-1 (MI:IP): X-rays for Life Sciences, Environmental Sciences, Agriculture, and Plant sciences (XLEAP)
研究基础设施:中型 RI-1 (MI:IP):用于生命科学、环境科学、农业和植物科学的 X 射线 (XLEAP)
- 批准号:
2330043 - 财政年份:2024
- 资助金额:
$ 10.45万 - 项目类别:
Cooperative Agreement
Amalgamating Evidence About Causes: Medicine, the Medical Sciences, and Beyond
合并有关原因的证据:医学、医学科学及其他领域
- 批准号:
AH/Y007654/1 - 财政年份:2024
- 资助金额:
$ 10.45万 - 项目类别:
Research Grant
International Centre for Mathematical Sciences 2024
国际数学科学中心 2024
- 批准号:
EP/Z000467/1 - 财政年份:2024
- 资助金额:
$ 10.45万 - 项目类别:
Research Grant
Isaac Newton Institute for Mathematical Sciences (INI)
艾萨克·牛顿数学科学研究所 (INI)
- 批准号:
EP/Z000580/1 - 财政年份:2024
- 资助金额:
$ 10.45万 - 项目类别:
Research Grant
ICE-TI: A Decolonized Approach to an AAS in Social and Behavioral Sciences
ICE-TI:社会和行为科学中 AAS 的非殖民化方法
- 批准号:
2326751 - 财政年份:2024
- 资助金额:
$ 10.45万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
- 批准号:
2317573 - 财政年份:2024
- 资助金额:
$ 10.45万 - 项目类别:
Continuing Grant
Doctoral Dissertation Research: A Syndrome of Care: The New Sciences of Survivorship at the Frontier of Medical Rescue
博士论文研究:护理综合症:医疗救援前沿的生存新科学
- 批准号:
2341900 - 财政年份:2024
- 资助金额:
$ 10.45万 - 项目类别:
Standard Grant
Conference: Emerging Statistical and Quantitative Issues in Genomic Research in Health Sciences
会议:健康科学基因组研究中新出现的统计和定量问题
- 批准号:
2342821 - 财政年份:2024
- 资助金额:
$ 10.45万 - 项目类别:
Standard Grant
Meta-analysis for environmental sciences
环境科学荟萃分析
- 批准号:
NE/Y003721/1 - 财政年份:2024
- 资助金额:
$ 10.45万 - 项目类别:
Training Grant