Establishment of New Numerical Methods for Applied Inverse and Ill-Posed Problems
应用逆问题和不适定问题的新数值方法的建立
基本信息
- 批准号:16340024
- 负责人:
- 金额:$ 10.3万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2004
- 资助国家:日本
- 起止时间:2004 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The aim of this research project is mathematical analysis and numerical analysis of ill-posed problems written in partial differential equations connecting with applied inverse problems which are important in physics, medical science, and engineering. Especially, considering the future requirement in practice, it is one of our originalities that we have developed a new fast multiple-precision arithmetic environment for the sake of large scale numerical computation of the ill-posed problems with high accuracy, in addition to mathematical theory and algorithms.In the scientific computations including numerical simulations of inverse problems, approximation by floating-point arithmetic are usually used in representation and arithmetic of real numbers on digital computers. Nowadays the double precision arithmetic defined in the IEEE754 standard is the common way. This means that scientific numerical computations are carried out on the assumption that real numbers have 15 decimal digits acc … More uracy in the usual end-user environments. In the floating-point arithmetic we cannot omit rounding errors and cannot treat real numbers exactly on the digital computers. Of course we must also take discretization errors into account which appear in discretization of functional equations and partial differential equations in numerical computations. In ill-posed problems which typically appear in inverse problems, the error is fatal defect for reliable numerical computations. This is the most different point between well-posed problems which induce stable numerical schemes. Conventional numerical analysis for ill-posed problems treated only discretization errors or measurement errors, and consideration of rounding errors is not enough. The most significant points of our research is development of a new multiple-precision arithmetic in discussion on rounding errors besides the conventional numerical analysis for discretization errors and measurement errors. In the multiple-precision arithmetic environment, the new aspects have been found in high accurate discretization of functional equations, and new computational schemes have been developed and established in the project.One of the concrete results is the fast multiple-precision arithmetic environment "exflib", which was designed and implemented in the predecessor research, has been improved by co-researcher Prof. Hiroshi Fujiwara, who has succeed in implementation of special functions and in porting to supercomputers to treat scientific numerical simulations. We also apply the spectral methods, which achieve quite high accurate numerical solutions than the conventional discretization methods. Combining the multiple-precision arithmetic and the spectral methods, we have proved the proposed approach is quite effective for numerical analysis of ill-posed problems. And we give a remark on the regularization method under high accurate numerical methods, especially the relation between measurement errors, regularization parameters, and computation precisions. The remark is important in practical applied inverse problems in which we must take measurement error into account.Each problem has its own ill-posedness. Because the matter is different in each setting in inverse problems, we place mathematical analysis for inverse problems as fundamental subjects in the project and we discuss uniqueness and conditional stability of solutions. Co-researcher Professor Masahiro Yamamoto obtain sharp results in inverse scattering problems. In application of the results in mathematical and numerical analysis to practical problems, we need the fundamental research from the computational mechanics viewpoints. All co-researchers have discussed applied inverse problems in their fields. We also discuss computer aided proof and succeed in numerical verification techniques which is one of the applications of the fast multiple-precision arithmetic. Less
本研究项目的目的是数学分析和数值分析的不适定问题写在偏微分方程连接应用反问题,这是重要的物理学,医学科学和工程。特别是考虑到未来的实际需要,我们的创新之处之一是在原有的数学理论和算法的基础上,开发了一种新的快速多精度算法环境,以满足对不适定问题进行大规模高精度数值计算的需要。在数字计算机上真实的数的表示和运算中,通常使用浮点运算的近似。IEEE754标准中定义的双精度算法是目前常用的算法。这意味着科学的数值计算是在假设真实的数有15位十进制数的前提下进行的。 ...更多信息 在通常的最终用户环境中的高精度。在浮点运算中,我们不能忽略舍入误差,也不能在数字计算机上精确地处理真实的数。当然,我们也必须考虑离散误差,出现在离散的函数方程和偏微分方程的数值计算。不适定问题是反问题中的一个典型问题,其误差是可靠数值计算的致命缺陷。这是诱导稳定的数值方案的适定问题之间的最大不同点。传统的不适定问题的数值分析只考虑离散误差或测量误差,对舍入误差的考虑不够。本研究的重点在于除了传统的离散化误差与量测误差的数值分析外,发展一种新的多精度算法来讨论舍入误差。在多精度运算环境中,本课题在函数方程的高精度离散化方面发现了新的方面,开发并建立了新的计算方案,具体成果之一是,共同研究员藤原弘教授对前期研究中设计并实现的快速多精度运算环境“exflib”进行了改进,他成功地实现了特殊功能,并移植到超级计算机上进行科学数值模拟。我们还应用谱方法,实现相当高的精度数值解比传统的离散方法。结合多精度算法和谱方法,我们证明了所提出的方法对于不适定问题的数值分析是非常有效的。并对高精度数值方法下的正则化方法进行了评述,特别是讨论了测量误差、正则化参数与计算精度之间的关系。这一点在实际应用中的反问题中是很重要的,因为反问题中必须考虑测量误差的影响。由于反问题在每个环境中的问题是不同的,我们把反问题的数学分析作为项目的基本主题,我们讨论解的唯一性和条件稳定性。共同研究员Masahiro Yamamoto教授在逆散射问题中获得了尖锐的结果。在将数学和数值分析的结果应用于实际问题时,需要从计算力学的角度进行基础研究。所有合作研究人员都讨论了各自领域的应用反问题。讨论了计算机辅助证明,并成功地实现了快速多精度算法的应用之一的数值验证技术。少
项目成果
期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On an inverse problem related to laser material treatments
关于激光材料处理的反问题
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:山本 昌宏;H" omberg;D
- 通讯作者:D
多倍長計算環境の64ビットPCでの実現と高精度数値積分公式への適用
64位PC上多精度计算环境的实现及高精度数值积分公式的应用
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:藤原 宏志;磯 祐介
- 通讯作者:磯 祐介
極座標変換に伴う微分方程式の特異性に回避公式について
关于避免极坐标变换导致微分方程奇异性的公式
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Vincent Blanlceil;Osamu Saeki;Kazuhiro Sakuma;Kazuei Onishi;青木貴史他;大西 和榮;青木貴史他;佐久間 一浩;今井 仁司
- 通讯作者:今井 仁司
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ISO Yuusuke其他文献
ISO Yuusuke的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ISO Yuusuke', 18)}}的其他基金
Mathematical modeling for glucose concentration in blood based on inverse problem analysis of fractional differential equations
基于分数阶微分方程反问题分析的血液葡萄糖浓度数学模型
- 批准号:
16K13774 - 财政年份:2016
- 资助金额:
$ 10.3万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Proposal of a new governing equation of crack propagation caused by change of temperature and its analysis
温度变化引起裂纹扩展的新控制方程的提出及其分析
- 批准号:
25610031 - 财政年份:2013
- 资助金额:
$ 10.3万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Estimation of modeling errors and their regularization in applied inverse problems
应用反问题中建模误差的估计及其正则化
- 批准号:
23654034 - 财政年份:2011
- 资助金额:
$ 10.3万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Breakthrough in numerical analysis and numerical computation related with infinitely-precision arithmetic
无限精度算术相关数值分析和数值计算的突破
- 批准号:
22340018 - 财政年份:2010
- 资助金额:
$ 10.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Foundation of high accuracy computational methods on the multiple-precision computer environment and its applications to analysi of inverse problems
多精度计算机环境下高精度计算方法的建立及其在反问题分析中的应用
- 批准号:
19340022 - 财政年份:2007
- 资助金额:
$ 10.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Numerical and Mathematical Analysis for the reconstruction for solutions of inverse and ill-posed problems by regularization methods
通过正则化方法重构逆问题和病态问题解的数值和数学分析
- 批准号:
13440031 - 财政年份:2001
- 资助金额:
$ 10.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mathematical Study of the Boundary Element Method and its Application to Inverse
边界元法的数学研究及其在反演中的应用
- 批准号:
10490018 - 财政年份:1998
- 资助金额:
$ 10.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Numerical Analysis for Ill-posed Problems Related with Engineering
工程不适定问题的数值分析
- 批准号:
07309021 - 财政年份:1995
- 资助金额:
$ 10.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似海外基金
Statistical aspects of non-linear inverse problems
非线性反问题的统计方面
- 批准号:
EP/Y030249/1 - 财政年份:2024
- 资助金额:
$ 10.3万 - 项目类别:
Research Grant
Travel: US Participation at the 11th International Conference on Inverse Problems in Engineering
出差:美国参加第11届工程反问题国际会议
- 批准号:
2347919 - 财政年份:2024
- 资助金额:
$ 10.3万 - 项目类别:
Standard Grant
Understanding, Predicting and Controlling AI Hallucination in Diffusion Models for Image Inverse Problems
理解、预测和控制图像逆问题扩散模型中的 AI 幻觉
- 批准号:
2906295 - 财政年份:2024
- 资助金额:
$ 10.3万 - 项目类别:
Studentship
Development of effective and accurate non-conventional solution methods for shape inverse problems: theory and numerics
开发有效且准确的形状反问题非常规求解方法:理论和数值
- 批准号:
23K13012 - 财政年份:2023
- 资助金额:
$ 10.3万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Forward and Inverse Problems for Topological Insulators and Kinetic Equations
拓扑绝缘体和动力学方程的正逆问题
- 批准号:
2306411 - 财政年份:2023
- 资助金额:
$ 10.3万 - 项目类别:
Standard Grant
Conference: CBMS Conference: Inverse Problems and Nonlinearity
会议:CBMS 会议:反问题和非线性
- 批准号:
2329399 - 财政年份:2023
- 资助金额:
$ 10.3万 - 项目类别:
Standard Grant
Gaussian process regression for Bayesian inverse problems
贝叶斯逆问题的高斯过程回归
- 批准号:
EP/X01259X/1 - 财政年份:2023
- 资助金额:
$ 10.3万 - 项目类别:
Research Grant
Study of Instabilities in Phase Transitions, Shell Buckling, and Inverse Problems
相变不稳定性、壳屈曲和反问题的研究
- 批准号:
2305832 - 财政年份:2023
- 资助金额:
$ 10.3万 - 项目类别:
Standard Grant
Inverse Problems Arising from Kinetic Theory and Applications
动力学理论及其应用产生的反问题
- 批准号:
2306221 - 财政年份:2023
- 资助金额:
$ 10.3万 - 项目类别:
Continuing Grant
Frames as dictionaries in inverse problems: Recovery guarantees for structured sparsity, unstructured environments, and symmetry-group identification
逆问题中的框架作为字典:结构化稀疏性、非结构化环境和对称群识别的恢复保证
- 批准号:
2308152 - 财政年份:2023
- 资助金额:
$ 10.3万 - 项目类别:
Standard Grant