Mathematical Sciences: Computational Error Estimation and Adaptive Error Control for Numerical Methods for Differential Equations

数学科学:微分方程数值方法的计算误差估计和自适应误差控制

基本信息

  • 批准号:
    9506519
  • 负责人:
  • 金额:
    $ 6.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1995
  • 资助国家:
    美国
  • 起止时间:
    1995-07-15 至 1999-06-30
  • 项目状态:
    已结题

项目摘要

Estep The investigator develops and implements accurate approximation methods for differential equations using a posteriori error estimates and adaptive error control. The main target is systems of reaction-diffusion equations. Such problems are important in practical terms because they occur as mathematical models in applied science and engineering, including applications in genetics, material science, chemistry, and biology, among others. The challenge is to compute accurate approximations of solutions that generically include multiple scales in their space and time behavior and whose behavior depends strongly on parameters prescribed as part of the model. Moreover, using computation as a scientific tool requires an estimate of the accuracy of the approximation. The approach to these problems is based on developing a posteriori error estimates that bound the error in terms of computable information obtained from the approximation once a computation is completed. The analysis takes into account both the difficulty of solving the differential equation over a small interval and the global accumulation of errors. In particular, the stability properties of the solution being approximated are measured by auxilary computations performed during the approximation. The result is robust and reliable computational error estimates. In addition, the investigator examines the dynamical properties of numerical schemes in the context of obtaining schemes with improved accuracy for a specified problem and obtaining more accurate error estimates for such schemes. The third component of the project is the development and implementation into code of adaptive error control algorithms based on the a posteriori error estimates. The ultimate goal of this project is the public release of a parallel code that can solve systems of reaction-diffusion equations in two and three dimensions reliably and efficiently. Mathematical models in applied science, including genetic s, material science, chemistry, and biology, are often expressed as nonlinear reaction-diffusion differential equations that contain source terms balanced against terms that diffuse energy. The goal of such modelling is to describe the physical situation in terms of the solution of the differential equation. However, the nonlinear nature of most models makes it impossible to solve the equations explicitly; consequently numerical approximation is an important tool in science. This approach has its own difficulties. The balance between reaction and diffusion is usually delicate and difficult to handle accurately. Moreover, solutions of such problems typically evolve on several scales, i.e. some interesting behavior occurs in very localized regions in space and time while other behavior evolves over long times or over larger regions in space. The use of a uniform numerical discretization for a real application results in huge computations that tax even the largest computers. The investigator aims to produce numerical schemes that adapt themselves to the localized behavior of the target solution so as to make the computations both as accurate as desired and as efficient as possible. Another benefit is that the estimate of the accuracy can then be reported, which increases the scientific level of numerical analysis. The mathematical approach is develop estimates of the error that use information obtained from the approximation, which can then be used to adapt the discretization, that is make the computations self-governing. The investigator also is implementing this theory in a code for parallel computers that can solve very general problems with minimum user input. The intent is to make the code publicly available, yielding a scientific tool that benefits the engineering and scientific infrastructure.
Estep 研究员开发和实现精确的近似方法微分方程使用后验误差估计和自适应误差控制。 主要目标是反应扩散方程组。 这些问题在实际中很重要,因为它们在应用科学和工程中作为数学模型出现,包括遗传学,材料科学,化学和生物学等方面的应用。 面临的挑战是计算精确的近似的解决方案,一般包括多个尺度在其空间和时间的行为,其行为强烈依赖于作为模型的一部分规定的参数。 此外,使用计算作为科学工具需要估计近似的准确性。 解决这些问题的方法是基于开发后验误差估计,一旦计算完成,就从近似中获得的可计算信息来约束误差。 该分析考虑了在小区间上求解微分方程的困难和误差的全局累积。 特别是,被近似的解决方案的稳定性测量近似过程中进行辅助计算。 其结果是稳健和可靠的计算误差估计。 此外,调查员检查的动态性能的数值方案的背景下,获得更高的精度为指定的问题,并获得更准确的误差估计,这样的计划。 该项目的第三个组成部分是开发和实施的代码的自适应误差控制算法的基础上的后验误差估计。 该项目的最终目标是公开发布一个并行代码,可以可靠有效地求解二维和三维反应扩散方程组。 应用科学中的数学模型,包括遗传学,材料科学,化学和生物学,通常表示为非线性反应扩散微分方程,其中包含与扩散能量项平衡的源项。 这种建模的目的是用微分方程的解来描述物理情况。 然而,大多数模型的非线性性质使得不可能显式求解方程,因此数值逼近是科学中的重要工具。 这种方法有其自身的困难。 反应和扩散之间的平衡通常是微妙的,难以准确处理。 此外,这些问题的解决方案通常在几个尺度上演变,即一些有趣的行为发生在空间和时间上的非常局部的区域中,而其他行为则在很长一段时间或更大的空间区域中演变。 在真实的应用中使用统一的数值离散化会导致巨大的计算量,即使是最大的计算机也会受到影响。 研究人员的目标是产生适应目标解的局部行为的数值方案,以便使计算尽可能准确和有效。 另一个好处是可以报告准确性的估计,这提高了数值分析的科学水平。 数学方法是使用从近似中获得的信息来估计误差,然后可以使用这些信息来调整离散化,即使计算自治。 研究人员还在并行计算机的代码中实现了这一理论,该代码可以用最少的用户输入解决非常普遍的问题。 其目的是使代码公开,产生一个有利于工程和科学基础设施的科学工具。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Donald Estep其他文献

<em>A posteriori</em> error estimation and adaptive mesh refinement for a multiscale operator decomposition approach to fluid–solid heat transfer
  • DOI:
    10.1016/j.jcp.2010.02.003
  • 发表时间:
    2010-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Donald Estep;Simon Tavener;Tim Wildey
  • 通讯作者:
    Tim Wildey

Donald Estep的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Donald Estep', 18)}}的其他基金

Collaborative Research: Construction and Analysis of Numerical Methods for Stochastic Inverse Problems with Application to Coastal Hydrodynamics
合作研究:随机反问题数值方法的构建和分析及其在海岸流体动力学中的应用
  • 批准号:
    1818777
  • 财政年份:
    2018
  • 资助金额:
    $ 6.2万
  • 项目类别:
    Standard Grant
Collaborative research: Statistical and computational efficiency for massive data sets via approximation-regularization
协作研究:通过近似正则化实现海量数据集的统计和计算效率
  • 批准号:
    1407543
  • 财政年份:
    2014
  • 资助金额:
    $ 6.2万
  • 项目类别:
    Standard Grant
Data-Driven Inverse Sensitivity Analysis for Predictive Coastal Ocean Modeling
预测沿海海洋建模的数据驱动逆敏感性分析
  • 批准号:
    1228206
  • 财政年份:
    2012
  • 资助金额:
    $ 6.2万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Error Quantification and Control for Gravitational Waveform Simulation
FRG:协作研究:重力波形仿真的误差量化和控制
  • 批准号:
    1065046
  • 财政年份:
    2011
  • 资助金额:
    $ 6.2万
  • 项目类别:
    Continuing Grant
Collaborative Research: Finite Element Methods for Discretizing Geometric PDEs with Nonlinear Constraints and Gauge Freedom
协作研究:具有非线性约束和规范自由度的离散几何偏微分方程的有限元方法
  • 批准号:
    0715135
  • 财政年份:
    2007
  • 资助金额:
    $ 6.2万
  • 项目类别:
    Standard Grant
Orbit Methods in Dynamics
动力学中的轨道方法
  • 批准号:
    0700874
  • 财政年份:
    2007
  • 资助金额:
    $ 6.2万
  • 项目类别:
    Continuing Grant
MSPA-CSE: Novel A Posteriori Analysis of Ecological Models: The Carbon Cycle
MSPA-CSE:生态模型的新颖后验分析:碳循环
  • 批准号:
    0434354
  • 财政年份:
    2004
  • 资助金额:
    $ 6.2万
  • 项目类别:
    Standard Grant
IGERT: Program for Interdisciplinary Mathematics, Ecology, and Statistics (PRIMES)
IGERT:跨学科数学、生态学和统计学项目 (PRIMES)
  • 批准号:
    0221595
  • 财政年份:
    2003
  • 资助金额:
    $ 6.2万
  • 项目类别:
    Continuing Grant
Computational Error Estimation and Adaptive Error Control for Multiscaled Differential Equations
多尺度微分方程的计算误差估计和自适应误差控制
  • 批准号:
    0107832
  • 财政年份:
    2001
  • 资助金额:
    $ 6.2万
  • 项目类别:
    Standard Grant
Workshop on Preservation of Stability Under Discretization
离散化下保持稳定性研讨会
  • 批准号:
    0102878
  • 财政年份:
    2001
  • 资助金额:
    $ 6.2万
  • 项目类别:
    Standard Grant

相似国自然基金

Handbook of the Mathematics of the Arts and Sciences的中文翻译
  • 批准号:
    12226504
  • 批准年份:
    2022
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
SCIENCE CHINA: Earth Sciences
  • 批准号:
    41224003
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21224005
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Information Sciences
  • 批准号:
    61224002
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51224001
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21024806
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
  • 批准号:
    81024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
  • 批准号:
    41024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Life and Physical Sciences interface: Whole animal mathematical and computational modelling of motion
生命与物理科学接口:整个动物运动的数学和计算模型
  • 批准号:
    BB/X005038/1
  • 财政年份:
    2023
  • 资助金额:
    $ 6.2万
  • 项目类别:
    Research Grant
SIAM Interdisciplinary Conferences in the Mathematical and Computational Sciences
SIAM 数学和计算科学跨学科会议
  • 批准号:
    2244415
  • 财政年份:
    2023
  • 资助金额:
    $ 6.2万
  • 项目类别:
    Continuing Grant
The Mathematical and Computational Modelling of Various Problems in the Life Sciences
生命科学中各种问题的数学和计算建模
  • 批准号:
    RGPIN-2020-05115
  • 财政年份:
    2022
  • 资助金额:
    $ 6.2万
  • 项目类别:
    Discovery Grants Program - Individual
The Mathematical and Computational Modelling of Various Problems in the Life Sciences
生命科学中各种问题的数学和计算建模
  • 批准号:
    RGPIN-2020-05115
  • 财政年份:
    2021
  • 资助金额:
    $ 6.2万
  • 项目类别:
    Discovery Grants Program - Individual
REU Site: Mathematical, Statistical, and Computational Methods in the Life Sciences
REU 网站:生命科学中的数学、统计和计算方法
  • 批准号:
    2050133
  • 财政年份:
    2021
  • 资助金额:
    $ 6.2万
  • 项目类别:
    Continuing Grant
The Mathematical and Computational Modelling of Various Problems in the Life Sciences
生命科学中各种问题的数学和计算建模
  • 批准号:
    RGPIN-2020-05115
  • 财政年份:
    2020
  • 资助金额:
    $ 6.2万
  • 项目类别:
    Discovery Grants Program - Individual
SIAM Interdisciplinary Conferences in the Mathematical and Computational Sciences
SIAM 数学和计算科学跨学科会议
  • 批准号:
    1757085
  • 财政年份:
    2018
  • 资助金额:
    $ 6.2万
  • 项目类别:
    Standard Grant
SIAM Conferences in the Mathematical and Computational Sciences
SIAM 数学和计算科学会议
  • 批准号:
    1460337
  • 财政年份:
    2015
  • 资助金额:
    $ 6.2万
  • 项目类别:
    Continuing Grant
Scholarships for Tech Valley Scholars in Computational, Mathematical, and Physical Sciences
为科技谷计算、数学和物理科学学者提供的奖学金
  • 批准号:
    1356379
  • 财政年份:
    2014
  • 资助金额:
    $ 6.2万
  • 项目类别:
    Standard Grant
EXTREEMS-QED: Research and training in computational and data-enabled science and engineering for undergraduates in the mathematical sciences at NJIT
EXTREEMS-QED:为 NJIT 数学科学本科生提供计算和数据支持的科学与工程方面的研究和培训
  • 批准号:
    1331010
  • 财政年份:
    2013
  • 资助金额:
    $ 6.2万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了