Mathematical Sciences: Low Dimensional Manifolds and Knot Theory
数学科学:低维流形和结理论
基本信息
- 批准号:9626550
- 负责人:
- 金额:$ 16.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1996
- 资助国家:美国
- 起止时间:1996-08-15 至 2000-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9626550 Gordon Cameron Gordon will continue to investigate Dehn surgery on knots. The main goal is further to circumscribe the various exceptional (non-hyperbolic) surgeries on hyperbolic knots. The known bounds on the number and nature of such surgeries are now quite sharp in many cases, and it seems that it may eventually be possible (at least modulo the Geometrization Conjecture of Thurston) to give an essentially complete description of all exceptional surgeries. The methods used will be based largely on the combinatorial- topological techniques developed by Gordon and John Luecke in their previous work on Dehn surgery, such as the proof of the Knot Complement Conjecture. This project deals with knot theory and 3-dimensional topology, the general goal of the latter being to understand the structure of 3-dimensional manifolds. These are objects that are locally like ordinary 3-dimensional Euclidean space but whose global structure may be quite complicated. Since we live in a 3-manifold, one might say that 3-dimensional topology aims to describe what the mathematical possibilities are for our spatial universe. This aim is still not realized, although there is tantalizing evidence that such a description might ultimately be possible. One important aspect of 3-dimensional topology is the theory of knots---a knot being a closed loop embedded somehow in ordinary 3-dimensional space. On the one hand, results about 3-manifolds often give information about knots as special cases, while on the other hand, a wide variety of mathematical methods can be applied to the study of knots, leading in turn to new information about 3-manifolds. (Recently, deep connections between 3-dimensional topology and quantum field theory were discovered in this way.) The main vehicle by which knot theory relates to the general theory of 3-manifolds is Dehn surgery, and this is the focus of the current project. In Dehn surgery, a solid tube around a knot is removed and "s ewn back" differently, giving a new 3-manifold. If one allows links (i.e., several loops linked together) as well as knots, then every 3-manifold can be obtained in this way, so a sufficiently good understanding of this construction would have important implications for the general theory of 3-manifolds. ***
9626550戈登·卡梅伦·戈登将继续调查德恩的绳结手术。主要目标是进一步限制各种特殊的(非双曲的)双曲纽结手术。在许多情况下,此类手术的数量和性质的已知界限现在相当尖锐,似乎最终可能(至少以瑟斯顿的几何化猜想为模)给出所有特殊手术的基本上完整的描述。所使用的方法将主要基于Gordon和John Luecke在他们之前关于Dehn手术的工作中开发的组合拓扑技术,例如证明纽结互补猜想。这个项目涉及纽结理论和三维拓扑学,后者的总体目标是了解三维流形的结构。这些物体局部类似于普通的三维欧几里德空间,但其全局结构可能相当复杂。由于我们生活在一个三维流形中,人们可能会说,三维拓扑学的目的是描述我们的空间宇宙的数学可能性。这一目标仍然没有实现,尽管有诱人的证据表明,这样的描述最终可能是可能的。三维拓扑学的一个重要方面是纽结理论-纽结是以某种方式嵌入普通三维空间的闭合环。一方面,关于三维流形的结果往往是关于纽结的特例,另一方面,各种各样的数学方法可以应用于纽结的研究,从而导致关于三维流形的新的信息。(最近,通过这种方式发现了三维拓扑和量子场论之间的深层次联系。)纽结理论与三维流形的一般理论相联系的主要载体是Dehn手术,这也是当前项目的重点。在Dehn手术中,一个结周围的实心管子被移除,并以不同的方式“S EWN背部”,给出了一个新的3-歧管。如果允许链接(即,几个环链接在一起)和纽结,那么每个3-流形都可以通过这种方式获得,因此对这种结构的足够好的理解将对3-流形的一般理论具有重要的意义。***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cameron Gordon其他文献
Effect of dung burial by the dung beetle Bubas bison on numbers and viability of Cryptosporidium oocysts in cattle dung.
粪甲虫布巴斯野牛埋粪对牛粪中隐孢子虫卵囊数量和活力的影响。
- DOI:
10.1016/j.exppara.2011.06.009 - 发表时间:
2011 - 期刊:
- 影响因子:2.1
- 作者:
U. Ryan;Rongchang Yang;Cameron Gordon;B. Doube - 通讯作者:
B. Doube
Harmonic Analysis and Partial Differential Equations
- DOI:
10.1007/978-3-031-24311-0 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Cameron Gordon - 通讯作者:
Cameron Gordon
Characterization of a putative Triticum aestivum abscisic acid receptor and its role in fungal pathogen resistance
- DOI:
- 发表时间:
2016-04 - 期刊:
- 影响因子:0
- 作者:
Cameron Gordon - 通讯作者:
Cameron Gordon
Cameron Gordon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cameron Gordon', 18)}}的其他基金
Characters in Low-Dimensional Topology
低维拓扑中的特征
- 批准号:
1830889 - 财政年份:2018
- 资助金额:
$ 16.14万 - 项目类别:
Standard Grant
Graduate Student Topology and Geometry Conference
研究生拓扑与几何会议
- 批准号:
1361929 - 财政年份:2014
- 资助金额:
$ 16.14万 - 项目类别:
Standard Grant
Conference on low-dimensional topology, knots, and orderable groups
低维拓扑、结和可有序群会议
- 批准号:
1305714 - 财政年份:2013
- 资助金额:
$ 16.14万 - 项目类别:
Standard Grant
Dehn Surgery and Related Topics in 3-Dimensional Topology
Dehn 手术和 3 维拓扑中的相关主题
- 批准号:
1309021 - 财政年份:2013
- 资助金额:
$ 16.14万 - 项目类别:
Standard Grant
Separability and logic in geometric group theory
几何群论中的可分离性和逻辑
- 批准号:
0906276 - 财政年份:2009
- 资助金额:
$ 16.14万 - 项目类别:
Standard Grant
3-Manifolds After Perelman; March 2006; Edinburgh, UK
3-佩雷尔曼之后的流形;
- 批准号:
0601251 - 财政年份:2006
- 资助金额:
$ 16.14万 - 项目类别:
Standard Grant
3-dimensional manifolds and related topic
3 维流形及相关主题
- 批准号:
0305846 - 财政年份:2003
- 资助金额:
$ 16.14万 - 项目类别:
Standard Grant
The Topology of Manifolds of Dimensions 3 and 4
3 维和 4 维流形的拓扑
- 批准号:
0229035 - 财政年份:2003
- 资助金额:
$ 16.14万 - 项目类别:
Standard Grant
Spring Topology and Dynamics Conference 2002, at the University of Texas at Austin on March 21-23, 2002
2002 年春季拓扑与动力学会议,2002 年 3 月 21-23 日在德克萨斯大学奥斯汀分校举行
- 批准号:
0129227 - 财政年份:2002
- 资助金额:
$ 16.14万 - 项目类别:
Standard Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Mathematical Sciences: Low-Dimensional Topology and Gauge Theory
数学科学:低维拓扑和规范论
- 批准号:
9896376 - 财政年份:1998
- 资助金额:
$ 16.14万 - 项目类别:
Standard Grant
Mathematical Sciences: Geometry and Low-Dimensional Topology in Group Theory
数学科学:群论中的几何和低维拓扑
- 批准号:
9703756 - 财政年份:1997
- 资助金额:
$ 16.14万 - 项目类别:
Standard Grant
Mathematical Sciences: Low-Dimensional Geometry and Topology
数学科学:低维几何和拓扑
- 批准号:
9704135 - 财政年份:1997
- 资助金额:
$ 16.14万 - 项目类别:
Continuing Grant
Mathematical Sciences: Low-Dimensional Topology and Gauge Theory
数学科学:低维拓扑和规范论
- 批准号:
9704204 - 财政年份:1997
- 资助金额:
$ 16.14万 - 项目类别:
Standard Grant
Mathematical Sciences: Symplectic and Contact Structures and Low Dimensional Topology
数学科学:辛和接触结构以及低维拓扑
- 批准号:
9625654 - 财政年份:1996
- 资助金额:
$ 16.14万 - 项目类别:
Standard Grant
Mathematical Sciences: Low Dimensional Manifolds: Their Symmetries and Topological Invariants
数学科学:低维流形:它们的对称性和拓扑不变量
- 批准号:
9529310 - 财政年份:1996
- 资助金额:
$ 16.14万 - 项目类别:
Standard Grant
Mathematical Sciences: Applications of Variational Problems on Riemann Surfaces to Low Dimensional Geometry
数学科学:黎曼曲面变分问题在低维几何中的应用
- 批准号:
9626565 - 财政年份:1996
- 资助金额:
$ 16.14万 - 项目类别:
Standard Grant
Mathematical Sciences: Low Dimensional Topology
数学科学:低维拓扑
- 批准号:
9501105 - 财政年份:1995
- 资助金额:
$ 16.14万 - 项目类别:
Continuing Grant
Mathematical Sciences: Problems in Knot Theory and Low- Dimensional Topology: Applications of Quasipositive Knots and Surfaces
数学科学:结理论和低维拓扑问题:拟正结和曲面的应用
- 批准号:
9504832 - 财政年份:1995
- 资助金额:
$ 16.14万 - 项目类别:
Standard Grant
Mathematical Sciences: Topics in Low-Dimensional Topology and Geometric Group Theory
数学科学:低维拓扑和几何群论专题
- 批准号:
9504946 - 财政年份:1995
- 资助金额:
$ 16.14万 - 项目类别:
Continuing Grant