Mathematical Sciences: Oscillation Inequalities, Almost Everywhere Convergence, and Related Questions
数学科学:振荡不等式、几乎处处收敛以及相关问题
基本信息
- 批准号:9531526
- 负责人:
- 金额:$ 4.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1996
- 资助国家:美国
- 起止时间:1996-06-15 至 1999-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACT Jones This proposal involves the continued study of square functions and other measures of the oscillation associated with a sequence of averaging operators in ergodic theory. Oscillation inequalities have already played a key role in the theory of a.e. convergence problems arising in connection with the pointwise ergodic theorem. In particular, oscillation operators give new information about upcrossing and jump inequalities. We hope to obtain new results in the case of a single transformation, and to extend several results to the multi-parameter case. We also continue the search for conditions on subsequences, both in the single and in the multiparameter case, which will imply a.e. convergence of the associated averages. The techniques used to study the questions in the proposal will often be from harmonic analysis, including Calderon-Zygmund methods and Littlewood-Paley theory. In addition, certain ideas from probability, especially martingale theory, can be expected to play a key role. Classical ergodic theory is the study of the long term behavior of dynamical systems. For example, we might be interested in the distribution of a pollutant in a water supply, and how the distribution of that pollutant changes over time. The ergodic theorem can be viewed as a generalization of the strong law of large numbers. A special case of the strong law of large numbers occurs if we consider the sequence of heads and tails observed if we toss a fair coin. In such a case we have independent trials, and we measure the oscillation of the sequence of averages by looking at the variance. A measure of oscillation is important because it provides a way of estimating how close a particular average is to the true (and in experimental situations, unknown) mean. In public opinion polls this measure of how close we are is usually referred to as the margin of error. In the more general setting, considered in this proposal, the trials are not independent. For example, the distribution o f a pollutant at one time will certainly play a role in determining the distribution a short time later. This is in contrast to the case of tossing a fair coin, where the fact that we saw heads on a certain toss gives us no information about whether or not we will see a head on the next toss. This proposal involves the study of the oscillation of ergodic averages, and measures of such things as how often the average values rise above some critical threshold. In experimental situations, because of equipment failure, or human error, we often find that some of the expected data is missing. In earlier work it has been shown that in some cases this leads to very misleading results, and in other cases we can still recover the correct result. The work in this area is very incomplete. We hope to be able to further classify the cases in which an experiment can still be salvaged, despite missing experimental data. In these cases, a measure of the oscillation, or margin of error, is especially critical.
这一提议涉及到继续研究遍历理论中与一系列平均算子相关的平方函数和其他振荡测度。在与点遍历定理有关的a.e.收敛问题的理论中,振荡不等式已经发挥了关键作用。特别是,振荡算子给出了关于上交叉和跳跃不等式的新信息。我们希望在单一变换的情况下得到新的结果,并将一些结果推广到多参数的情况。我们还继续搜索子序列上的条件,在单参数和多参数情况下,这将意味着相关平均值的收敛。用于研究提案中问题的技术通常来自谐波分析,包括卡尔德龙-齐格蒙德方法和Littlewood-Paley理论。此外,来自概率论的某些思想,特别是鞅理论,有望发挥关键作用。经典遍历理论是对动力系统长期行为的研究。例如,我们可能对供水系统中污染物的分布,以及污染物的分布如何随时间变化感兴趣。遍历定理可以看作是强大数定律的推广。如果我们考虑抛一枚均匀硬币时观察到的正面和反面的序列,就会出现强大数定律的一个特例。在这种情况下,我们有独立的试验,我们通过观察方差来测量平均值序列的振荡。振荡的测量很重要,因为它提供了一种估计特定平均值与真实平均值(在实验情况下是未知的)接近程度的方法。在民意调查中,我们通常把这种衡量我们之间差距的方法称为误差幅度。在本建议所考虑的更一般的情况下,这些试验不是独立的。例如,污染物在某一时刻的分布肯定会对以后短时间内的分布起决定作用。这与投掷均匀硬币的情况相反,在投掷均匀硬币的情况下,我们在某一次投掷中看到正面的事实并没有告诉我们在下一次投掷中是否会看到正面。这一建议涉及到对遍历平均振荡的研究,以及对诸如平均值上升到某个临界阈值以上的频率等问题的测量。在实验情况下,由于设备故障或人为错误,我们经常会发现一些预期的数据丢失。在早期的工作中已经表明,在某些情况下,这会导致非常具有误导性的结果,而在其他情况下,我们仍然可以恢复正确的结果。这方面的工作还很不完整。我们希望能够进一步分类,在缺乏实验数据的情况下,实验仍然可以抢救的情况。在这些情况下,测量振荡或误差范围尤为关键。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Roger Jones其他文献
Analysis Preservation in ATLAS
ATLAS 中的分析保存
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
K. Cranmer;L. Heinrich;Roger Jones;D. South - 通讯作者:
D. South
Genetic Zoogeography of the Mysis relicta Species Group (Crustacea: Mysidacea) in Northern Europe and North America.
北欧和北美的糠虾物种组(甲壳纲:糠虾科)的遗传动物地理学。
- DOI:
- 发表时间:
1994 - 期刊:
- 影响因子:0
- 作者:
R. Väinölä;B. Riddoch;R. Ward;Roger Jones - 通讯作者:
Roger Jones
Biology of Australian Butterflies
澳大利亚蝴蝶的生物学
- DOI:
10.1071/9780643105140 - 发表时间:
1999 - 期刊:
- 影响因子:3.6
- 作者:
R. Kitching;Elly Scheermeyer;Roger Jones;N. Pierce - 通讯作者:
N. Pierce
Contribution of academic departments of general practice to undergraduate teaching, and their plans for curriculum development.
全科医学学术部门对本科教学的贡献及其课程开发计划。
- DOI:
- 发表时间:
1994 - 期刊:
- 影响因子:0
- 作者:
L. Robinson;J. Spencer;Roger Jones - 通讯作者:
Roger Jones
Roger Jones的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Roger Jones', 18)}}的其他基金
UK involvement in LSST: Phase C (Lancaster D4.1 component)
英国参与 LSST:C 阶段(兰卡斯特 D4.1 部分)
- 批准号:
ST/Y003004/1 - 财政年份:2023
- 资助金额:
$ 4.2万 - 项目类别:
Research Grant
GridPP7 Lancaster Tier 2 Hardware Tranche 1 (2023-2026)
GridPP7 兰卡斯特第 2 层硬件第 1 部分 (2023-2026)
- 批准号:
ST/Z000084/1 - 财政年份:2023
- 资助金额:
$ 4.2万 - 项目类别:
Research Grant
Lancaster EPP Group Responsive Grant Bid 2022
兰卡斯特 EPP 集团 2022 年响应拨款投标
- 批准号:
ST/X006069/1 - 财政年份:2023
- 资助金额:
$ 4.2万 - 项目类别:
Research Grant
Upgrade of the ATLAS detector at the LHC (2023-26)
LHC ATLAS 探测器升级 (2023-26)
- 批准号:
ST/X001512/1 - 财政年份:2023
- 资助金额:
$ 4.2万 - 项目类别:
Research Grant
Lancaster Experimental Particle Physics Consolidated Grant 2022-2025
兰卡斯特实验粒子物理综合补助金 2022-2025
- 批准号:
ST/W000563/1 - 财政年份:2022
- 资助金额:
$ 4.2万 - 项目类别:
Research Grant
GridPP6 Lancaster Tier-2 Hardware Tranche-2 (2022-2024)
GridPP6 兰卡斯特 Tier-2 硬件第二批 (2022-2024)
- 批准号:
ST/W007134/1 - 财政年份:2021
- 资助金额:
$ 4.2万 - 项目类别:
Research Grant
IRIS Digital Asset - ATLAS GPF Machine Learning
IRIS 数字资产 - ATLAS GPF 机器学习
- 批准号:
ST/W004895/1 - 财政年份:2021
- 资助金额:
$ 4.2万 - 项目类别:
Research Grant
GridPP6 Tranche 1 Hardware Grant
GridPP6 第 1 期硬件拨款
- 批准号:
ST/V001558/1 - 财政年份:2020
- 资助金额:
$ 4.2万 - 项目类别:
Research Grant
IRIS grants for digital assets.
IRIS 为数字资产提供资助。
- 批准号:
ST/S002707/1 - 财政年份:2019
- 资助金额:
$ 4.2万 - 项目类别:
Research Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
REU Site: Bigelow Laboratory for Ocean Sciences - Undergraduate Research Experience in the Gulf of Maine and the World Ocean
REU 站点:毕格罗海洋科学实验室 - 缅因湾和世界海洋的本科生研究经验
- 批准号:
2349230 - 财政年份:2024
- 资助金额:
$ 4.2万 - 项目类别:
Continuing Grant
Research Infrastructure: Mid-scale RI-1 (MI:IP): X-rays for Life Sciences, Environmental Sciences, Agriculture, and Plant sciences (XLEAP)
研究基础设施:中型 RI-1 (MI:IP):用于生命科学、环境科学、农业和植物科学的 X 射线 (XLEAP)
- 批准号:
2330043 - 财政年份:2024
- 资助金额:
$ 4.2万 - 项目类别:
Cooperative Agreement
Amalgamating Evidence About Causes: Medicine, the Medical Sciences, and Beyond
合并有关原因的证据:医学、医学科学及其他领域
- 批准号:
AH/Y007654/1 - 财政年份:2024
- 资助金额:
$ 4.2万 - 项目类别:
Research Grant
International Centre for Mathematical Sciences 2024
国际数学科学中心 2024
- 批准号:
EP/Z000467/1 - 财政年份:2024
- 资助金额:
$ 4.2万 - 项目类别:
Research Grant
Isaac Newton Institute for Mathematical Sciences (INI)
艾萨克·牛顿数学科学研究所 (INI)
- 批准号:
EP/Z000580/1 - 财政年份:2024
- 资助金额:
$ 4.2万 - 项目类别:
Research Grant
ICE-TI: A Decolonized Approach to an AAS in Social and Behavioral Sciences
ICE-TI:社会和行为科学中 AAS 的非殖民化方法
- 批准号:
2326751 - 财政年份:2024
- 资助金额:
$ 4.2万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
- 批准号:
2317573 - 财政年份:2024
- 资助金额:
$ 4.2万 - 项目类别:
Continuing Grant
Doctoral Dissertation Research: A Syndrome of Care: The New Sciences of Survivorship at the Frontier of Medical Rescue
博士论文研究:护理综合症:医疗救援前沿的生存新科学
- 批准号:
2341900 - 财政年份:2024
- 资助金额:
$ 4.2万 - 项目类别:
Standard Grant
Conference: Emerging Statistical and Quantitative Issues in Genomic Research in Health Sciences
会议:健康科学基因组研究中新出现的统计和定量问题
- 批准号:
2342821 - 财政年份:2024
- 资助金额:
$ 4.2万 - 项目类别:
Standard Grant
Meta-analysis for environmental sciences
环境科学荟萃分析
- 批准号:
NE/Y003721/1 - 财政年份:2024
- 资助金额:
$ 4.2万 - 项目类别:
Training Grant