Mathematical Sciences: Percolative Models
数学科学:渗透模型
基本信息
- 批准号:9618128
- 负责人:
- 金额:$ 6.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-07-15 至 2000-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9618128 Zhang The project concentrates on percolation theory, a mathematical theory used to describe transitions of physical systems. Percolation theory has a variety of applications to solid physics, biology, computer science, and geology. A percolation process typically depends on one or more parameters. A dramatic change in physical properties may occur as a critical parameter value is passed. The research will focus on the behavior of percolative models in the following three areas: percolation near, above and below the critical thresholds. In particular, the project will investigate mathematically rigorous exact solutions for the percolative models. The research makes use of probability theory (the moment estimations, the ergodic theory, correlation and martingale inequalities and stochastic ordering), graph theory (duality, the fractal dimension), combinatorics (partition lattices, distributive lattices), and function analysis (the real analyticity). The project will use these mathematical tools to advance our rigorous understanding of critical phenomena. The project concentrates on percolation, a mathematical model used to describe transitions of physical systems. Percolation theory has a variety of applications to solid physics, biology, computer science, and geology. A percolation process typically depends on one or more parameters. A dramatic change in physical properties may occur as a critical parameter value is passed. For example, suppose we immerse a large porous solid in a bucket water. Clearly, how water penetrates the solid depends on the size of the pores of the solid. A simple mathematical model of such a process is defined by taking the pores to be distributed in some regular manner, and to be open or closed with probabilities p or 1-p. There is a critical threshold, for the probability p at which the behavior changes abruptly. For values of p below the critical value the water penetration is only superficial and above it the penetration is arbitrarily deep. The specific behavior near the critical threshold is more complicated. One of the most challenging problems is to give a mathematical description of deep penetration near the critical threshold. The research will focus on three areas: the behaviors of percolation near the critical threshold, above the critical threshold and below the critical threshold. In particular, the project will investigate mathematically rigorous exact solutions for the percolation process. The research makes use of probability theory, graph theory, combinatorics and function analysis. The project will use these mathematical tools to advance our rigorous understanding of critical phenomena.
9618128 张 该项目专注于渗透理论,一种用于描述物理系统转变的数学理论。渗流理论在固体物理学、生物学、计算机科学和地质学中有多种应用。渗滤过程通常取决于一个或多个参数。当超过临界参数值时,物理特性可能会发生巨大变化。该研究将重点关注渗透模型在以下三个领域的行为:接近、高于和低于临界阈值的渗透。特别是,该项目将研究渗透模型的数学上严格的精确解决方案。该研究利用了概率论(矩估计、遍历理论、相关性和鞅不等式以及随机排序)、图论(对偶性、分形维数)、组合学(划分格子、分配格子)和函数分析(实解析性)。该项目将使用这些数学工具来推进我们对关键现象的严格理解。 该项目的重点是渗透,一种用于描述物理系统转变的数学模型。渗流理论在固体物理学、生物学、计算机科学和地质学中有多种应用。渗滤过程通常取决于一个或多个参数。当超过临界参数值时,物理特性可能会发生巨大变化。例如,假设我们将一个大的多孔固体浸入一桶水中。显然,水如何渗透固体取决于固体孔隙的大小。这种过程的简单数学模型是通过将孔隙以某种规则方式分布并以 p 或 1-p 的概率打开或关闭来定义的。对于行为突然改变的概率 p,存在一个临界阈值。对于低于临界值的 p 值,水渗透只是表面的,而高于临界值时,渗透是任意深度的。临界阈值附近的具体行为更加复杂。最具挑战性的问题之一是对临界阈值附近的深度穿透进行数学描述。研究将集中在三个领域:接近临界阈值、高于临界阈值和低于临界阈值的渗流行为。特别是,该项目将研究渗滤过程的数学上严格的精确解决方案。该研究利用了概率论、图论、组合学和函数分析。该项目将使用这些数学工具来推进我们对关键现象的严格理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yu Zhang其他文献
Gated recurrent unit model for a sequence tagging problem
序列标记问题的门控循环单元模型
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Rekia kadari;Yu Zhang;Weinan Zhang;Ting Liu - 通讯作者:
Ting Liu
Identification and functional perspective of a novel HLA-A allele: A*0279
新型 HLA-A 等位基因的鉴定和功能视角:A*0279
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:3.2
- 作者:
Fangfang Liu;Shan Wang;Y. Ye;Huagang Zhang;Yu Zhang;Weifeng Chen - 通讯作者:
Weifeng Chen
Efficacy of mesalazine in combination with bifid triple viable capsules on ulcerative colitis and the resultant effect on the inflammatory factors.
美沙拉秦联合双歧三联活菌胶囊治疗溃疡性结肠炎的疗效及其对炎症因子的影响。
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0.8
- 作者:
Min Huang;Zhongqiong Chen;Chunhui Lang;Jianlong Chen;Biying Yang;Ling;Yu Zhang - 通讯作者:
Yu Zhang
One-step glass-like coating of polycarbonate for seamless DNA purification and amplification on an integrated monolithic microdevice
一步式玻璃状聚碳酸酯涂层,用于在集成整体式微型设备上进行无缝 DNA 纯化和扩增
- DOI:
10.1016/j.snb.2014.06.078 - 发表时间:
2014 - 期刊:
- 影响因子:8.4
- 作者:
Yu Zhang;I. Yoo;N. Lee - 通讯作者:
N. Lee
Comprehensive Assessment of the Effect of Urban Built-Up Land Expansion and Climate Change on Net Primary Productivity
城市建设用地扩张和气候变化对净初级生产力影响的综合评估
- DOI:
10.1155/2020/8489025 - 发表时间:
2020-05 - 期刊:
- 影响因子:2.3
- 作者:
Pengyan Zhang;Yanyan Li;Wenlong Jing;Dan Yang;Yu Zhang;Ying Liu;Wenliang Geng;Tianqi Rong;Jingwen Shao;Jiaxin Yang;Mingzhou Qin - 通讯作者:
Mingzhou Qin
Yu Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yu Zhang', 18)}}的其他基金
CAREER: When Reality Fails Expectations: Containing Reflective Domain Models for Human-Aware Planning and Learning of Robotic Teammates
职业:当现实低于预期时:包含用于机器人队友的人类意识规划和学习的反射域模型
- 批准号:
2047186 - 财政年份:2021
- 资助金额:
$ 6.19万 - 项目类别:
Standard Grant
PFI-TT: Gravity Satellite Observation System for Water Resource Management
PFI-TT:水资源管理重力卫星观测系统
- 批准号:
2044704 - 财政年份:2021
- 资助金额:
$ 6.19万 - 项目类别:
Standard Grant
Collaborative Research: RAPID--Forensic Analysis of Flood-Wind-Rainfall Interactions during Hurricanes Florence and Michael
合作研究:RAPID——佛罗伦斯和迈克尔飓风期间洪水-风-降雨相互作用的法证分析
- 批准号:
1909367 - 财政年份:2019
- 资助金额:
$ 6.19万 - 项目类别:
Standard Grant
EAGER: Reconciling Model Discrepancies in Human-Robot Teams
EAGER:协调人机团队中的模型差异
- 批准号:
1844524 - 财政年份:2018
- 资助金额:
$ 6.19万 - 项目类别:
Standard Grant
Evolutionary Virtual Expert System
进化虚拟专家系统
- 批准号:
EP/R029741/1 - 财政年份:2018
- 资助金额:
$ 6.19万 - 项目类别:
Research Grant
Fatigue Behavior of Functionally Graded Ceramics Synthesis, Experiments, and Analysis
功能梯度陶瓷的疲劳行为合成、实验和分析
- 批准号:
0758530 - 财政年份:2008
- 资助金额:
$ 6.19万 - 项目类别:
Standard Grant
MRI: Acquisition of Equipment to Establish a Distributed Intelligent Agent Systems Infrastructure for Research and Education at Trinity University
MRI:采购设备,为三一大学的研究和教育建立分布式智能代理系统基础设施
- 批准号:
0821585 - 财政年份:2008
- 资助金额:
$ 6.19万 - 项目类别:
Standard Grant
REU Site: Multi-Agent Simulations of Social Systems
REU 站点:社会系统的多智能体模拟
- 批准号:
0755405 - 财政年份:2008
- 资助金额:
$ 6.19万 - 项目类别:
Continuing Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
REU Site: Bigelow Laboratory for Ocean Sciences - Undergraduate Research Experience in the Gulf of Maine and the World Ocean
REU 站点:毕格罗海洋科学实验室 - 缅因湾和世界海洋的本科生研究经验
- 批准号:
2349230 - 财政年份:2024
- 资助金额:
$ 6.19万 - 项目类别:
Continuing Grant
Research Infrastructure: Mid-scale RI-1 (MI:IP): X-rays for Life Sciences, Environmental Sciences, Agriculture, and Plant sciences (XLEAP)
研究基础设施:中型 RI-1 (MI:IP):用于生命科学、环境科学、农业和植物科学的 X 射线 (XLEAP)
- 批准号:
2330043 - 财政年份:2024
- 资助金额:
$ 6.19万 - 项目类别:
Cooperative Agreement
Amalgamating Evidence About Causes: Medicine, the Medical Sciences, and Beyond
合并有关原因的证据:医学、医学科学及其他领域
- 批准号:
AH/Y007654/1 - 财政年份:2024
- 资助金额:
$ 6.19万 - 项目类别:
Research Grant
International Centre for Mathematical Sciences 2024
国际数学科学中心 2024
- 批准号:
EP/Z000467/1 - 财政年份:2024
- 资助金额:
$ 6.19万 - 项目类别:
Research Grant
Isaac Newton Institute for Mathematical Sciences (INI)
艾萨克·牛顿数学科学研究所 (INI)
- 批准号:
EP/Z000580/1 - 财政年份:2024
- 资助金额:
$ 6.19万 - 项目类别:
Research Grant
ICE-TI: A Decolonized Approach to an AAS in Social and Behavioral Sciences
ICE-TI:社会和行为科学中 AAS 的非殖民化方法
- 批准号:
2326751 - 财政年份:2024
- 资助金额:
$ 6.19万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
- 批准号:
2317573 - 财政年份:2024
- 资助金额:
$ 6.19万 - 项目类别:
Continuing Grant
Doctoral Dissertation Research: A Syndrome of Care: The New Sciences of Survivorship at the Frontier of Medical Rescue
博士论文研究:护理综合症:医疗救援前沿的生存新科学
- 批准号:
2341900 - 财政年份:2024
- 资助金额:
$ 6.19万 - 项目类别:
Standard Grant
Conference: Emerging Statistical and Quantitative Issues in Genomic Research in Health Sciences
会议:健康科学基因组研究中新出现的统计和定量问题
- 批准号:
2342821 - 财政年份:2024
- 资助金额:
$ 6.19万 - 项目类别:
Standard Grant
Meta-analysis for environmental sciences
环境科学荟萃分析
- 批准号:
NE/Y003721/1 - 财政年份:2024
- 资助金额:
$ 6.19万 - 项目类别:
Training Grant














{{item.name}}会员




