Mathematical Sciences: Hypergeometric Functions, Zeta and Gamma Values in Finite Characteristic
数学科学:超几何函数、有限特征中的 Zeta 和 Gamma 值
基本信息
- 批准号:9623187
- 负责人:
- 金额:$ 4.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1996
- 资助国家:美国
- 起止时间:1996-08-15 至 1999-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Thakur 9623187 The investigator will explore analogies between Number Theory and Geometry. The hypergeometric function is one of the most important special functions in mathematics and mathematical physics. Many of the functions that arise in various branches of mathematics and physics-Bessel, Legendre, and Jacobi functions, and many interesting orthogonal polynomials-are special cases of the hypergeometric function. Similarly, the q-hypergeometric functions arise in the study of mathematical physics. The investigator has introduced an analogue for function fields, and he will develop their theory and applications. A classical problem in Number Theory is to understand the nature of the values of the Riemann zeta-function. Euler showed that the values at even integers s are rational multiples of powers of pi. For odd s, the only known result is that the zeta-function is irrational at s=3. Carlitz considered an analogue of the zeta-function by taking a sum over monic polynomials with coefficients in finite fields, and established an analogue of Euler's result. In the joint work with Anderson, the PI showed that for any positiveminteger s, the values are logarithms of algebraic numbers, and are therefore transcendental. It was also shown that the analogue of Euler's result for odd s does not hold in this case. The proposer plans to generalize thismresult to general function fields. The order of vanishing of zeta functions gives important arithmetic information. The PI plans to complete new partial results that he has obtained about these orders. Also, the PI plans to workmout the relations of special values with the cyclotomic theory, in light of recent work of Anderson. The special values of the classical gamma function have also been extensively studied. The PI introduced a new gamma function for function fields. He has established special values results for its interpolations at finite primes for general function fields and for interpolati on at the infinite prime only for the rational function field. He plans to settle the remaining case. This research falls into the general mathematical field of Number Theory. Number theory has its historical roots in the study of the whole numbers, addressing such questions as those dealing with the divisibility of one whole number by another. It is among the oldest branches of mathematics and was pursued for many centuries for purely aesthetic reasons. However, within the last half century it has become an indispensable tool in diverse applications in areas such as data transmission and processing, and communication systems.
Thakur 9623187 The investigator will explore analogies between Number Theory and Geometry. The hypergeometric function is one of the most important special functions in mathematics and mathematical physics. Many of the functions that arise in various branches of mathematics and physics-Bessel, Legendre, and Jacobi functions, and many interesting orthogonal polynomials-are special cases of the hypergeometric function. Similarly, the q-hypergeometric functions arise in the study of mathematical physics. The investigator has introduced an analogue for function fields, and he will develop their theory and applications. A classical problem in Number Theory is to understand the nature of the values of the Riemann zeta-function. Euler showed that the values at even integers s are rational multiples of powers of pi. For odd s, the only known result is that the zeta-function is irrational at s=3. Carlitz considered an analogue of the zeta-function by taking a sum over monic polynomials with coefficients in finite fields, and established an analogue of Euler's result. In the joint work with Anderson, the PI showed that for any positiveminteger s, the values are logarithms of algebraic numbers, and are therefore transcendental. It was also shown that the analogue of Euler's result for odd s does not hold in this case. The proposer plans to generalize thismresult to general function fields. The order of vanishing of zeta functions gives important arithmetic information. The PI plans to complete new partial results that he has obtained about these orders. Also, the PI plans to workmout the relations of special values with the cyclotomic theory, in light of recent work of Anderson. The special values of the classical gamma function have also been extensively studied. The PI introduced a new gamma function for function fields. He has established special values results for its interpolations at finite primes for general function fields and for interpolati on at the infinite prime only for the rational function field. He plans to settle the remaining case. This research falls into the general mathematical field of Number Theory. Number theory has its historical roots in the study of the whole numbers, addressing such questions as those dealing with the divisibility of one whole number by another. It is among the oldest branches of mathematics and was pursued for many centuries for purely aesthetic reasons. However, within the last half century it has become an indispensable tool in diverse applications in areas such as data transmission and processing, and communication systems.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dinesh Thakur其他文献
Disaster Survival Training Using Virtual Reality
利用虚拟现实进行灾难生存训练
- DOI:
10.1109/icccs49678.2020.9276982 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Nisheegandha Sahebrao Bhookan;Mayuri Sharad Murde;Dinesh Thakur;Hemantkumar B. Jadhav - 通讯作者:
Hemantkumar B. Jadhav
Towards new frontiers in mobile manipulation: Team CTU-UPenn-NYU at MBZIRC 2020
迈向移动操控的新领域:CTU-UPenn-NYU 团队在 MBZIRC 2020 上
- DOI:
10.55417/fr.2022004 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Petr Štibinger;G. Broughton;Filip Majer;Zdeněk Rozsypálek;Anthony Wang;Kshitij Jindal;Alex Zhou;Dinesh Thakur;Giuseppe Loianno;T. Krajník;M. Saska - 通讯作者:
M. Saska
Team DARwIn
达尔文团队
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Jaekweon Han;R. Nguyen;Stephen G. McGill;Dinesh Thakur;D. Hong;Daniel D. Lee - 通讯作者:
Daniel D. Lee
A column generation approach for optimized routing and coordination of a UAV fleet
用于优化无人机机队路线和协调的列生成方法
- DOI:
10.1109/ssrr.2016.7784326 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Julia Zillies;Stephan Westphal;Dinesh Thakur;Vijay R. Kumar;George Pappas;D. Scheidt - 通讯作者:
D. Scheidt
Optimal Paths for Polygonal Robots in SE(2)
SE 中多边形机器人的最优路径(2)
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Monroe Kennedy;Dinesh Thakur;M. A. Hsieh;S. Bhattacharya;Vijay R. Kumar - 通讯作者:
Vijay R. Kumar
Dinesh Thakur的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dinesh Thakur', 18)}}的其他基金
Mathematical Sciences: Gauss Sums, Zeta and Gamma Functions in Arithmetic of Function Fields
数学科学:函数域算术中的高斯和、Zeta 和 Gamma 函数
- 批准号:
9314059 - 财政年份:1993
- 资助金额:
$ 4.23万 - 项目类别:
Standard Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Mathematical Sciences: Algebraic, Geometric and Combinatorial Structures Related to Multivariate Hypergeometric Functions
数学科学:与多元超几何函数相关的代数、几何和组合结构
- 批准号:
9625511 - 财政年份:1996
- 资助金额:
$ 4.23万 - 项目类别:
Continuing grant
Mathematical Sciences: Generalized Theta Functions, Hypergeometric and Conformal Field Theory
数学科学:广义 Theta 函数、超几何和共形场论
- 批准号:
9696197 - 财政年份:1996
- 资助金额:
$ 4.23万 - 项目类别:
Standard Grant
Mathematical Sciences: General Hypergeometric Functions in Representation Theory and Mathematical Physics
数学科学:表示论和数学物理中的一般超几何函数
- 批准号:
9501290 - 财政年份:1995
- 资助金额:
$ 4.23万 - 项目类别:
Continuing Grant
Mathematical Sciences: Generalized Theta Functions, Hypergeometric and Conformal Field Theory
数学科学:广义 Theta 函数、超几何和共形场论
- 批准号:
9504884 - 财政年份:1995
- 资助金额:
$ 4.23万 - 项目类别:
Standard Grant
Mathematical Sciences: Algebraic, Geometric and Combinatorial Structures Related to Multivariate Hypergeometric Functions
数学科学:与多元超几何函数相关的代数、几何和组合结构
- 批准号:
9304247 - 财政年份:1993
- 资助金额:
$ 4.23万 - 项目类别:
Continuing grant
Mathematical Sciences: Multivariate Orthogonal Polynomials and Hypergeometric Functions of Matrix Argument
数学科学:多元正交多项式和矩阵论证的超几何函数
- 批准号:
9304290 - 财政年份:1993
- 资助金额:
$ 4.23万 - 项目类别:
Continuing Grant
Mathematical Sciences: Multidimensional Hypergeometric Functions in Representation Theory and Conformal Field Theory
数学科学:表示论和共形场论中的多维超几何函数
- 批准号:
9203929 - 财政年份:1992
- 资助金额:
$ 4.23万 - 项目类别:
Continuing Grant
Mathematical Sciences: Algebraic, Geometric and Combinatorial Structures Related to Hypergeometric Functions
数学科学:与超几何函数相关的代数、几何和组合结构
- 批准号:
9104867 - 财政年份:1991
- 资助金额:
$ 4.23万 - 项目类别:
Standard Grant
Mathematical Sciences: Hypergeometric Functions over Finite Fields
数学科学:有限域上的超几何函数
- 批准号:
9096216 - 财政年份:1990
- 资助金额:
$ 4.23万 - 项目类别:
Continuing Grant
Mathematical Sciences: Hypergeometric Series Very-Well- Poised on Semisimple Lie Algebras and Multivariate Orthogonal Polynomials
数学科学:半简单李代数和多元正交多项式上的超几何级数非常平衡
- 批准号:
9002342 - 财政年份:1990
- 资助金额:
$ 4.23万 - 项目类别:
Continuing Grant