Topics in Degenerate and/or Singular Evolution and Applied Mathematics

简并和/或奇异进化和应用数学主题

基本信息

  • 批准号:
    9706388
  • 负责人:
  • 金额:
    $ 10.31万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1997
  • 资助国家:
    美国
  • 起止时间:
    1997-07-15 至 2001-09-30
  • 项目状态:
    已结题

项目摘要

9706388 DiBenedetto The main issues of this investigation concern the local and global structure of solutions of some classes of degenerate and/or singular evolution equations, including those (Buckley--Leverett system) bearing lower order terms with critical (Hadamard) growth conditions. Special issues include the local regularity of the solutions, intrinsic Harnack estimates, the boundary behavior, and Quasi--Minima in the Calculus of Variations. For evolution equations bearing logarithmic singularities the solvability of the Cauchy problem will be studied. In space-dimensions higher than two, this hinges upon a preliminary description of the asymptotic behavior permitted by the possible solutions, as well as the solvability of the corresponding elliptic equation. This is a severely ill-posed problem, as, for example, compactly supported data do not generate a solution. Solvability depends on the possibility of generating uniform lower bounds for approximating solutions at one single point. Then the global Harnack estimate we have developed would yield a lower bound in the whole space. The main difficulty in this process is that there is not a natural topology by which to approximate the data. The flow of two immiscible fluids in a porous medium (Buckley--Leverett model) is modeled by evolutions equations bearing singular terms. One asks whether, despite the jump in internal energy, the saturation remains continuous. This would amount to say that the interface of contact of the two fluids occurs in such a way that the mass is locally conserved. A class of singular equations arises in the slow evolution of thin colloidal films spread over a flat surface. The singularities are logarithmic and are due to the van der Waals forces. As the film spreads, it may undergo a spontaneous rupture. Since the film is applied as a coating to protect metal surfaces, one is interested in the evolution of such a process and possibly in some sort of understanding of the phenomenon of rupture. The solvability of these equations, their structure, and possibly an understanding of the rupture phenomenon will be investigated.
9706388 迪贝内代托 本次调查的主要问题涉及当地 的解的整体结构 退化和/或奇异演化方程,包括 Buckley-Leverett系统 阿达玛(Hadamard)生长条件。 特别问题包括 解的局部正则性,内在的 Harnack估计、边界行为和拟极小 在变分法中。对于演化方程 具有对数奇点的可解性 将研究Cauchy问题。在空间维度中 高于两个,这取决于初步的描述 可能解所允许的渐近行为, 以及相应椭圆方程的可解性 方程这是一个严重不适定的问题,因为, 例如,计算机支持的数据不会生成解决方案。 可解性取决于 一阶近似解的一致下界 单点。那么我们得出的全球Harnack估计 会在整个空间中得到一个下界的主要困难 在这个过程中, 拓扑结构来近似数据。 两种不混溶流体在多孔介质中的流动 (Buckley-Leverett模型)用演化方程建模 带有单数形式。有人问,尽管跳跃在 内部能量,饱和度保持连续。这将 相当于说两种流体的接触界面 以这样一种方式发生,即质量局部守恒。 在慢演化过程中出现了一类奇异方程 一层薄薄的胶状薄膜覆盖在平面上。的奇点 是对数的,并且是由于货车范德华力。 当薄膜扩散时,它可能会自发破裂。以来 该膜作为涂层应用以保护金属表面,一种是 对这一过程的演变感兴趣, 对断裂现象有了一些了解 这些方程的可解性,它们的结构, 将研究对断裂现象的理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Emmanuele DiBenedetto其他文献

Mathematical aspects of Variability and Variability Suppression of the Single Photon Response in Vertebrate Phototransduction
  • DOI:
    10.1016/j.bpj.2008.12.1073
  • 发表时间:
    2009-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Emmanuele DiBenedetto;Paolo Bisegna;Giovanni Caruso;Lixin Shen;Daniele Andreucci;Vsevolod Gurevich;Heidi E. Hamm
  • 通讯作者:
    Heidi E. Hamm
The steady state Stefan problem with convection
  • DOI:
    10.1007/bf00283258
  • 发表时间:
    1980-01-01
  • 期刊:
  • 影响因子:
    2.400
  • 作者:
    J. R. Cannon;Emmanuele DiBenedetto;George H. Knightly
  • 通讯作者:
    George H. Knightly
A Wiener-type condition for boundary continuity of quasi-minima of variational integrals
  • DOI:
    10.1007/s00229-015-0780-4
  • 发表时间:
    2015-08-07
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Emmanuele DiBenedetto;Ugo Gianazza
  • 通讯作者:
    Ugo Gianazza
Revamped Outer Segment Structure and Photoresponse in Retinal Rods Over-expressing Rhodopsin
  • DOI:
    10.1016/j.bpj.2008.12.2708
  • 发表时间:
    2009-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Xiao-Hong Wen;Lixin Shen;Richard S. Brush;Norman Michaud;Muayyad R. Al-Ubaidi;Vsevolod V. Gurevich;Heidi E. Hamm;Janis Lem;Emmanuele DiBenedetto;Robert E. Anderson;Clint L. Makino
  • 通讯作者:
    Clint L. Makino

Emmanuele DiBenedetto的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Emmanuele DiBenedetto', 18)}}的其他基金

Bridging Across Scales to Model Cone Phototransduction
跨尺度桥接锥体光转导模型
  • 批准号:
    1812601
  • 财政年份:
    2018
  • 资助金额:
    $ 10.31万
  • 项目类别:
    Continuing Grant
Topics in Degenerate and Singular Parabolic Equations and Homogenization
简并和奇异抛物型方程以及齐次化主题
  • 批准号:
    1265548
  • 财政年份:
    2013
  • 资助金额:
    $ 10.31万
  • 项目类别:
    Continuing Grant
Topics in Harnack Inequalities, Degenerate Evolution Equations, and Applied Mathematics
哈纳克不等式、简并进化方程和应用数学主题
  • 批准号:
    0652385
  • 财政年份:
    2007
  • 资助金额:
    $ 10.31万
  • 项目类别:
    Continuing Grant
Topics in Degenerate Evolution Equations and Applied Mathematics
简并进化方程和应用数学专题
  • 批准号:
    0100660
  • 财政年份:
    2001
  • 资助金额:
    $ 10.31万
  • 项目类别:
    Standard Grant
Topics in Degenerate and/or Singular Evolution and Applied Mathematics
简并和/或奇异进化和应用数学主题
  • 批准号:
    0196159
  • 财政年份:
    2000
  • 资助金额:
    $ 10.31万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Topics in Applied Mathematics and the Degenerate Evolution Equations
数学科学:应用数学和简并进化方程主题
  • 批准号:
    9404379
  • 财政年份:
    1994
  • 资助金额:
    $ 10.31万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Topics on Free Boundary Problems and Singular Parabolic Equations
数学科学:自由边界问题和奇异抛物型方程专题
  • 批准号:
    9104088
  • 财政年份:
    1991
  • 资助金额:
    $ 10.31万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Topics On Regularity Theory and Free Boundary Problems
数学科学:正则性理论和自由边界问题专题
  • 批准号:
    8802883
  • 财政年份:
    1988
  • 资助金额:
    $ 10.31万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Evolution Free Boundary Problems and Regularity Theory
数学科学:无进化边界问题和正则性理论
  • 批准号:
    8502297
  • 财政年份:
    1985
  • 资助金额:
    $ 10.31万
  • 项目类别:
    Standard Grant
Doubly Nonlinear Evolution Equations and Free-Boundary Problems (Mathematical Sciences)
双非线性演化方程和自由边界问题(数学科学)
  • 批准号:
    8202100
  • 财政年份:
    1982
  • 资助金额:
    $ 10.31万
  • 项目类别:
    Standard Grant

相似海外基金

Regularity Problems in Free Boundaries and Degenerate Elliptic Partial Differential Equations
自由边界和简并椭圆偏微分方程中的正则问题
  • 批准号:
    2349794
  • 财政年份:
    2024
  • 资助金额:
    $ 10.31万
  • 项目类别:
    Standard Grant
Interfaces, Degenerate Partial Differential Equations, and Convexity
接口、简并偏微分方程和凸性
  • 批准号:
    2348846
  • 财政年份:
    2024
  • 资助金额:
    $ 10.31万
  • 项目类别:
    Standard Grant
Homogenization of random walks: degenerate environments and long-range jumps
随机游走的同质化:退化环境和长程跳跃
  • 批准号:
    EP/W022923/1
  • 财政年份:
    2023
  • 资助金额:
    $ 10.31万
  • 项目类别:
    Research Grant
Enhancement of optical interaction and all-optical switching by degenerate critical coupling in single-layered graphene
单层石墨烯简并临界耦合增强光相互作用和全光开关
  • 批准号:
    23H00274
  • 财政年份:
    2023
  • 资助金额:
    $ 10.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Degenerate Whittaker functions and application to automorphic L functions
简并 Whittaker 函数及其在自同构 L 函数中的应用
  • 批准号:
    23K12965
  • 财政年份:
    2023
  • 资助金额:
    $ 10.31万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The study of Whittaker functions for degenerate characters and their application to the global theory of automorphic forms
简并特征Whittaker函数的研究及其在自守形式全局理论中的应用
  • 批准号:
    23K03079
  • 财政年份:
    2023
  • 资助金额:
    $ 10.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Degenerate diffusions in finite and infinite dimensions: smoothing and convergence
有限和无限维度的简并扩散:平滑和收敛
  • 批准号:
    2246491
  • 财政年份:
    2023
  • 资助金额:
    $ 10.31万
  • 项目类别:
    Standard Grant
Inverse problems for degenerate hyperbolic partial differential equations on manifolds
流形上简并双曲偏微分方程的反问题
  • 批准号:
    22K20340
  • 财政年份:
    2022
  • 资助金额:
    $ 10.31万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Sharp traveling waves for degenerate diffusion equations with delay
具有延迟的简并扩散方程的尖锐行波
  • 批准号:
    RGPIN-2022-03374
  • 财政年份:
    2022
  • 资助金额:
    $ 10.31万
  • 项目类别:
    Discovery Grants Program - Individual
Strong-Electron Correlation with Degenerate Richardson-Gaudin States
与简并理查森-高丁态的强电子相关性
  • 批准号:
    574012-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 10.31万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了