Variational problems related to the 1-Laplace operator
与 1-拉普拉斯算子相关的变分问题
基本信息
- 批准号:117345648
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2009
- 资助国家:德国
- 起止时间:2008-12-31 至 2012-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Various problems in nature, technology and economy lead to a so called variational problem where a certain energy function has to be minimized under suitable constraints and the solution satisfies some associated differential equation. The methods for the treatment of such problems are mainly based on the differentiability of the involved functionals and operators. However, in the recent applications one is more and more confronted with situations where the usual assumptions concerning differentiability are not available. However, the study of such nondifferentiable problems is still in an early stage. The present project intends to contribute to this development by investigating current issues occuring in the context of the 1-Laplace operator that enjoys increasing interest for instance in image processing. The comprehensive experience of the applicant in the treatment of nondifferentiable problems in mechanics and geometry and, recently, also in the problems under consideration are certainly a solid foundation for successful investigations. The project aims to contribute to the treatment of a permanently growing class of problems in calculus, geometry, and applications, which will certainly gain significance in the near future, not only by the investigation of concrete problems but also by the development and establishment of methods.
自然界、技术和经济中的各种问题都会导致所谓的变分问题,即在适当的约束条件下最小化某个能量函数,其解满足相关的微分方程。处理这类问题的方法主要基于所涉及的泛函和算子的可微性。然而,在最近的应用中,人们越来越多地遇到关于可微性的通常假设不成立的情况。然而,这类不可微问题的研究还处于初级阶段。目前的项目打算通过调查在1-拉普拉斯算子的背景下发生的当前问题来促进这一发展,例如在图像处理方面。申请人在处理力学和几何中的不可微问题以及最近正在考虑的问题方面的综合经验无疑是成功研究的坚实基础。该项目旨在为处理微积分、几何和应用中不断增长的一类问题做出贡献,这在不久的将来肯定会获得重要意义,不仅是通过对具体问题的研究,而且是通过方法的发展和建立。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Friedemann Schuricht其他文献
Professor Dr. Friedemann Schuricht的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Friedemann Schuricht', 18)}}的其他基金
Mathematische Grundlagen bei der Behandlung von Kontaktproblemen in der nichtlinearen Elastizitätstheorie
非线性弹性理论中处理接触问题的数学基础
- 批准号:
5416158 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
复杂图像处理中的自由非连续问题及其水平集方法研究
- 批准号:60872130
- 批准年份:2008
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
Methods for Variational Inequalities and Related Problems
变分不等式及相关问题的方法
- 批准号:
26330029 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Some variational problems related to optimal transportation
与最优交通相关的一些变分问题
- 批准号:
1109663 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Standard Grant
Research on the regularity of solutions for nonlinear partial differential equations related to variational problems
与变分问题有关的非线性偏微分方程解的规律性研究
- 批准号:
22540207 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Singularities and balancing conditions on the theory of minimal surfaces and related geometric variational problems
最小曲面理论及相关几何变分问题的奇异性和平衡条件
- 批准号:
22540232 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Nonlinear partial differntial equations related to geometric variational problems
与几何变分问题相关的非线性偏微分方程
- 批准号:
16540188 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on topology related to variational problems and application of Mathematica
变分问题相关拓扑研究及Mathematica应用
- 批准号:
13640090 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research in evolution equations related to variational problems
与变分问题相关的演化方程研究
- 批准号:
12640205 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical Analysis of free boundary problems related to a variational problem
与变分问题相关的自由边界问题的数学分析
- 批准号:
09640170 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical Sciences: Geometric Variational Problems and Related PDE Questions
数学科学:几何变分问题及相关偏微分方程问题
- 批准号:
9012718 - 财政年份:1990
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Geometric Variational Problems and Related PDE Questions
数学科学:几何变分问题及相关偏微分方程问题
- 批准号:
8703537 - 财政年份:1987
- 资助金额:
-- - 项目类别:
Continuing Grant