Nonlinear partial differntial equations related to geometric variational problems
与几何变分问题相关的非线性偏微分方程
基本信息
- 批准号:16540188
- 负责人:
- 金额:$ 2.5万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2004
- 资助国家:日本
- 起止时间:2004 至 2007
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The head investigator researches the geometric visualization of standard realized crystal lattices, which related with harmonic maps as an example of geometric variational problems. The standard realization of crystal lattices is defined by Kotani-Sunada, and it is considered as a realization of real crystals in nature. The definition of crystal lattice is an abelian covering of finite graph. The covering transformation group and/or the first fundamental group of a finite graph is its the first homology group and it is abelian. So, the crystal lattice is an abelian convering graph of a finite graph. The standard realization of a crystal lattices is defined using harmonic maps into Albanese Torus. Hence the definition is very abstract.The head investigator construct an application to visualize the standard realization of crystal lattices. Sunada constructs K4 Crystal Lattice as the standard realization of K4 Graph in 3-dimensional Euclidean space. Our application plays important role in calculations of the K4 real crystal with Carbon atoms
首席研究员研究标准实现晶格的几何可视化,其中涉及调和映射作为几何变分问题的一个例子。晶格的标准实现是由Kotani-Sunada定义的,它被认为是自然界中真实的晶体的实现。晶格的定义是有限图的阿贝尔覆盖。有限图的覆盖变换群和/或第一基本群是它的第一同调群,并且它是交换的。因此,晶格是有限图的交换转化图。晶格的标准实现是使用调和映射到Albanese Torus来定义的。因此定义是非常抽象的。首席研究员构建了一个应用程序来可视化晶格的标准实现。Sunada在三维欧氏空间中构造了K4晶体格作为K4图的标准实现。我们的应用在含碳原子的K4真实的晶体的计算中起到了重要的作用
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Star exponential functions as two-valued elementes
作为二值元素的星指数函数
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:M. A. Regusa;A. Tachikawa;Yoshiaki Maeda et al.
- 通讯作者:Yoshiaki Maeda et al.
Partial regularity of harmonic maps into Finsler spaces
调和映射到芬斯勒空间的部分正则性
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Maria Alessandra Ragusa;Atsushi Tachikawa;Taeko Yamazaki;Michihiro Hashimoto and Taeko Yamazaki;Taeko Yamazaki;Taeko Yamazaki;T. Matsuyama and M. Ruzhansky;Taeko Yamazaki;Taeko Yamazaki;Taeko Yamazaki;Taeko Yamazaki;Tokio Matsuyama;Tokio Matsuyama;松山 登喜夫;Taeko Yamazaki;山崎多恵子;山崎 多恵子;Atushi Tachikawa
- 通讯作者:Atushi Tachikawa
Partial reguraliry of the minimizer of quadratic functionals with VMO coefficients
带VMO系数的二次函数极小值的部分正则
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:M. A. Regusa;A. Tachikawa;Yoshiaki Maeda et al.;Atsushi Tachikawa et al.
- 通讯作者:Atsushi Tachikawa et al.
Non-formal defomation quantization of Frechlet-Poisson algebras
Frechlet-Poisson 代数的非形式变形量化
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:H. Omori;Y. Maeda;et. al
- 通讯作者:et. al
大学における統一認証基盤としてのCASとその拡張
CAS 及其扩展为大学统一认证平台
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Wani;S.A.;Nabi;A.;Fayaz;I.;Ahmad;I.;Nishikawa;Y.;Qureshi;K.;Khan;M.A.;Chowdhary;J.;内藤久資
- 通讯作者:内藤久資
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NAITO Hisashi其他文献
NAITO Hisashi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NAITO Hisashi', 18)}}的其他基金
Mechanism of passive joint moment (PJM) on ankle joint and estimation method of the PJM with ankle movement
踝关节被动关节力矩(PJM)机制及随踝关节运动的PJM估计方法
- 批准号:
23650323 - 财政年份:2011
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Geometric variational problems and its visualization
几何变分问题及其可视化
- 批准号:
22540075 - 财政年份:2010
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Technique for Estimmation of Motion Status and Intension for Prosthesis Users and Development of a New Hip Disarticulation Prosthesis
假肢使用者运动状态和强度的估计技术及新型髋关节离断假肢的开发
- 批准号:
22680046 - 财政年份:2010
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for Young Scientists (A)
Case Studies of Business English in Overseas Trading by Small-Sized Companies
小型企业海外贸易商务英语案例分析
- 批准号:
21520630 - 财政年份:2009
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
ACTN3 genotype and muscle adaptability in Japanese
日本人的ACTN3基因型与肌肉适应性
- 批准号:
21300238 - 财政年份:2009
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of finite-element and rigid body hybrid human simulation model
有限元与刚体混合人体仿真模型的开发
- 批准号:
20700462 - 财政年份:2008
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
A STUDY OF STRESS PROTEIN IN HUMAN SKELETAL MUSCLE
人类骨骼肌中应激蛋白的研究
- 批准号:
16300212 - 财政年份:2004
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Effects of endurance training on heat shock protein in skeletal muscle of senescent animals
耐力训练对衰老动物骨骼肌热休克蛋白的影响
- 批准号:
12480011 - 财政年份:2000
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Geometry and Analysis of Strongly Pseudoconvex CR Structure and Contact Structure
强赝凸CR结构和接触结构的几何与分析
- 批准号:
11440019 - 财政年份:1999
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B).
Variational Problems in Differential Geometry
微分几何中的变分问题
- 批准号:
09440030 - 财政年份:1997
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似海外基金
New Development of Submanifold Geometry and Harmonic Map Theory in Symmetric Spaces
对称空间子流形几何与调和映射理论的新进展
- 批准号:
15K04851 - 财政年份:2015
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on submanifold geometry and harmonic map theory in symmetric spaces
对称空间子流形几何与调和映射理论研究
- 批准号:
24540090 - 财政年份:2012
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Regularity for the evolutionary p-Laplace operator and global existence of the p-harmonic map flows
演化 p-拉普拉斯算子的正则性和 p 调和映射流的全局存在性
- 批准号:
24540215 - 财政年份:2012
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A regularity criterion for the harmonic map flows and asymptotic analysis for singularity
调和映射流的正则判据和奇点的渐近分析
- 批准号:
21540222 - 财政年份:2009
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical research on regularity and singularity for the m-harmonic map flows and energy quantization phenomenon
调和图流规律性与奇异性及能量量子化现象的数学研究
- 批准号:
19540221 - 财政年份:2007
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Dirichlet space and analysis of harmonic map over the space of Gromov-Hausdorff limit spaces
狄利克雷空间与格罗莫夫-豪斯多夫极限空间上的调和映射分析
- 批准号:
13640220 - 财政年份:2001
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Regularity, Convergence, and Uniqueness Problems for Harmonic Map Flows
调和映射流的正则性、收敛性和唯一性问题
- 批准号:
0096062 - 财政年份:1999
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Regularity, Convergence, and Uniqueness Problems for Harmonic Map Flows
调和映射流的正则性、收敛性和唯一性问题
- 批准号:
9706855 - 财政年份:1997
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
S^2-値のharmonic mapの正則性について
关于S^2值的调和图的规律性
- 批准号:
04740074 - 财政年份:1992
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)