Differential geometric study of conformal and CR invariant theory via the ambient metric construction due to Fefferman and Graham

通过 Fefferman 和 Graham 的环境度量构造对共形和 CR 不变理论进行微分几何研究

基本信息

项目摘要

Conformal and CR geometries are rigid structures, which are distinguishable by curvature and integral invariants. The invariant theory can be studied via parabolic Cartan geometry/tractor calculus. An alternative approach developed by Fefferman/Graham is the ambient metric construction, which is basically equivalent to the Poincare-Einstein model. Via these constructions invariants such as the GJMS-operators and Q-curvature can be defined for the purpose of purely mathematical studies in conformal and CR geometry. Moreover, "holographic relations" of objects on the (conformal) boundary and the interior "bulk" of the Poincare model can be established. This is of interest in physics, where the holographic principle (of quantum gravity) finds a concrete manifestation in connection with the AdS/CFT-correspondence, which aims to relate string theory/sup er gravity with sup er symmetric conformal field theories. This project considers as its main goal (geometric) realisations of Fefferman-Graham ambient and Poincare-Einstein models in curved situations. For such models explicit expressions for conformal and CR invariants (which are otherwise formally defined) shall be calculated. We aim to establish "holographic" relations between objects on the boundary and on the interior of the Poincare-Einstein model. In particular, we ask for Taylor expansions of Poincare spaces and explicit formulae for GJMS-operators and Q-curvature. A further question concerns geometric Poisson transformations for harmonic solutions of boundary problems on curved Poincare models in terms of integral formulae. It is also a task to relate symmetries such as solutions of overdetermined invariant differential equations (e.g. twistor forms/spinors) on the boundary to geometric objects on the Poincare "bulk".
共形几何和CR几何都是刚性结构,它们可以通过曲率和积分不变量来区分。不变量理论可以通过抛物卡坦几何/拖拉机微积分来研究。Fefferman/Graham提出的另一种方法是环境度量结构,它基本上相当于庞加莱-爱因斯坦模型。通过这些构造,诸如gjms算子和q曲率之类的不变量可以定义为保形几何和CR几何的纯数学研究的目的。此外,还可以建立(共形)边界上的物体与庞加莱模型内部“体”之间的“全息关系”。这在物理学中很有趣,全息原理(量子引力)在AdS/ cft对应中找到了具体的表现,其目的是将弦论/重力与对称共形场论联系起来。该项目将在弯曲情况下实现费费曼-格雷厄姆环境模型和庞加莱-爱因斯坦模型作为其主要目标(几何)。对于这些模型,应计算共形不变量和CR不变量的显式表达式(否则将被正式定义)。我们的目标是在庞加莱-爱因斯坦模型的边界和内部建立物体之间的“全息”关系。特别地,我们要求得到庞加莱空间的泰勒展开式以及gjms算子和q曲率的显式公式。另一个问题是关于曲线庞加莱模型边界问题调和解的几何泊松变换的积分公式。将边界上的对称性(如超定不变微分方程的解(如扭转形式/旋量))与庞加莱“体”上的几何物体联系起来也是一个任务。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Privatdozent Dr. Felipe Leitner其他文献

Privatdozent Dr. Felipe Leitner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Privatdozent Dr. Felipe Leitner', 18)}}的其他基金

Differential geometric study of conformal and CR invariant theory via the ambient metric construction due to Fefferman and Graham
通过 Fefferman 和 Graham 的环境度量构造对共形和 CR 不变理论进行微分几何研究
  • 批准号:
    42840418
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Lorentzian and conformal manifolds with special holonomy
具有特殊完整性的洛伦兹流形和共形流形
  • 批准号:
    5453236
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似国自然基金

Lagrangian origin of geometric approaches to scattering amplitudes
  • 批准号:
    24ZR1450600
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
对RS和AG码新型软判决代数译码的研究
  • 批准号:
    61671486
  • 批准年份:
    2016
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
Ginzburg-Landau 型发展方程的拓扑缺陷以及相关问题研究
  • 批准号:
    11071206
  • 批准年份:
    2010
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目
Bose-Einstein凝聚、超导G-L模型以及相关问题研究
  • 批准号:
    10771181
  • 批准年份:
    2007
  • 资助金额:
    25.0 万元
  • 项目类别:
    面上项目

相似海外基金

Development of differential geometric study of surfaces starting from the value distribution of the Gauss map
从高斯图的值分布出发进行曲面微分几何研究的发展
  • 批准号:
    23K03086
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on relations between differential equations and geometric structures by the method of twistor theory
用扭量理论方法研究微分方程与几何结构的关系
  • 批准号:
    22540109
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Differential geometric study of surfaces with singularities
具有奇点的曲面的微分几何研究
  • 批准号:
    20740028
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Differential geometric study of conformal and CR invariant theory via the ambient metric construction due to Fefferman and Graham
通过 Fefferman 和 Graham 的环境度量构造对共形和 CR 不变理论进行微分几何研究
  • 批准号:
    42840418
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Differential geometric study of four dimensional diffeomorphism Poincare conjecture and variant Yamabe invariants
四维微分同胚Poincare猜想和变体Yamabe不变量的微分几何研究
  • 批准号:
    18540067
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The study of relations between the cone structures associated with foliations and their differential geometric properties.
研究与叶状结构相关的锥体结构及其微分几何特性之间的关系。
  • 批准号:
    16540050
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Microlocal,FunctionalAnalytic and Numerical Study of Partial Differential Equations and Tomography
偏微分方程和层析成像的微局部、泛函分析和数值研究
  • 批准号:
    16540140
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A geometric study of invariants of the system of differential equations of finite type.
有限型微分方程组不变量的几何研究。
  • 批准号:
    15540055
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Jordan algebraic and differential geometric study of homogeneous complex manifolds
齐次复流形的乔丹代数和微分几何研究
  • 批准号:
    15540066
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The study of relations between topological properties and differential geometric properties of foliated structures.
研究叶状结构的拓扑性质和微分几何性质之间的关系。
  • 批准号:
    13640056
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了