GOALI: III-Nitride and SiC Transistors for High-Frequency, High-Power Devices
GOALI:用于高频、高功率器件的 III 族氮化物和 SiC 晶体管
基本信息
- 批准号:9811366
- 负责人:
- 金额:$ 24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-09-01 至 2002-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9811366 Ruden Certain wide band gap semiconductor materials are quickly emerging as the materials of choice for important device applications. Among these applications are ultraviolet (UV) photodetectors, blue and UV light emitters, and high frequency, high power electronic devices. In this context, GaN and the related III-nitride materials have recently attracted great interest, and much work has been done aimed at assessing their basic properties. In a past NSF sponsored effort, the Georgia Tech and University of Minnesota groups involved in this proposal have teamed to begin the development of a novel, materials theory based device modeling technique. Application of this technique to the study of GaN bulk material has resulted in much new information: the first determination of the high field carrier drift velocities, the first determination of the hole transport properties, the first determination of the electron and hole impact ionization rates, the first determination of the breakdown electric fields in GaN, and the low and intermediate field electronic transport properties of A1N and AlGaN. Building on these achievements, a more device oriented study of the potential of GaN and the related III-N materials for several different applications can now be made. It is the principal goal of this proposed research effort to analyze the prospectus of the III-N materials and of SiC for use in high frequency power amplifiers. The program involves a theory and modeling effort in conjunction with an experimental program. The proposed theory and modeling work will be complemented by experiment in order to help refine and compare the models to real structures. By working in conjunction with an experimental team, the effect of nonidealities such as dislocations and impurities within the materials can be explored theoretically in the presence of a crucial feedback mechanism that will enhance the accuracy and relevance of the theoretical models. In addition, the theory and modeling effort w ill explore ways in which novel physical effects can be used to improve device performance. Specifically, the modeling will examine the usage of piezoelectrically induced charge densities to increase the current carrying capability of a heterojunction field effect transistor and how the p-type carrier concentration within the base of a heterostructure bipolar transistor can be increased to reduce the base resistance. In addition, the theory and modeling will be used to determine the ultimate limits of performance of SiC and GaN based high frequency, high power amplifiers by providing the first accurate determination of the parameters which influence their performance, i.e., the breakdown field, current carrying capability, "knee" voltage and heat dissipation. The study of the breakdown characteristics of different FET designs will build on our earlier work on impact ionization in bulk GaN material. However, it will not be limited solely to ideal bulk material but will include the effect of field non-uniformity in realistic device structures as well as effects associated with impurities and dislocations on the breakdown properties. For a meaningful device modeling effort close coupling to experimental work is desirable. This will be accomplished through extensive collaboration with three experimental groups active in III-N and SiC research. The principal collaborators in this effort are Superior Vacuum Technology Assoc. (SVTA) of Eden Prairie, MN, which has produced state of the art III-N materials and devices. Prof. Ruden has had close and fruitful interaction with SVTA in this area for several years. SVTA will provide device quality III-N structures for this proposed program at cost of fabrication. The second key collaborative group is at Motorola in Tempe, AZ. The Motorola group will be principally involved in high frequency device testing. Lastly, Prof. Willander's group at Chalmers University, Sweden, will provide SiC material and will be strongly involved in the fabrication and characterization of both SiC and III-N devices. Direct comparison of the calculations to experiment can thus be made, greatly aiding the refinement of the models and ensuring that they address issues confronted in state of the art devices. Additional collaborations of the principal investigators relevant to the proposed program involve the Honeywell Corp., Lockheed Martin Corp. (III-N devices), and Nortel(SiC devices). ***
某些宽带隙半导体材料正迅速成为重要器件应用的首选材料。 这些应用包括紫外(UV)光电探测器、蓝光和UV光发射器以及高频、大功率电子器件。 在这种背景下,GaN和相关的III族氮化物材料最近引起了极大的兴趣,并且已经做了很多工作,旨在评估其基本特性。 在过去的NSF赞助的努力中,参与该提案的格鲁吉亚理工学院和明尼苏达大学的小组已经合作开始开发一种新颖的基于材料理论的器件建模技术。 这项技术应用于GaN块体材料的研究,产生了许多新的信息:第一次确定的高场载流子漂移速度,第一次确定的空穴传输特性,第一次确定的电子和空穴碰撞电离率,第一次确定的击穿电场在GaN中,和低和中间场的AlN和AlGaN的电子传输特性。 在这些成就的基础上,现在可以对GaN和相关III-N材料在几种不同应用中的潜力进行更面向器件的研究。 本研究的主要目标是分析III-N材料和SiC用于高频功率放大器的前景。 该计划涉及理论和建模工作与实验计划相结合。 所提出的理论和建模工作将通过实验来补充,以帮助改进模型并将其与真实的结构进行比较。 通过与实验团队合作,可以在存在关键反馈机制的情况下从理论上探索材料中的位错和杂质等非理想性的影响,这将提高理论模型的准确性和相关性。 此外,理论和建模工作将探索新的物理效应可用于提高器件性能的方法。 具体而言,建模将检查压电感应电荷密度的使用,以增加异质结场效应晶体管的载流能力,以及如何增加异质结构双极晶体管的基极内的p型载流子浓度,以降低基极电阻。 此外,理论和建模将用于通过提供影响其性能的参数的第一次准确确定来确定基于SiC和GaN的高频、高功率放大器的性能的极限,即,击穿场、载流能力、“膝”电压和散热。 对不同FET设计的击穿特性的研究将建立在我们早期关于体相GaN材料碰撞电离的工作的基础上。 然而,它将不仅限于理想的块体材料,而是将包括在现实器件结构中的场不均匀性的影响以及与杂质和位错相关的对击穿特性的影响。 对于一个有意义的设备建模工作密切耦合的实验工作是可取的。 这将通过与三个活跃在III-N和SiC研究中的实验组的广泛合作来实现。 这项工作的主要合作者是伊甸园草原(MN)的上级真空技术协会(SVTA),该协会生产了最先进的III-N材料和器械。 Ruden教授与SVTA在这一领域进行了多年的密切和富有成效的互动。 SVTA将以制造成本为该计划提供器件质量的III-N结构。 第二个关键的合作小组是在亚利桑那州滕佩的摩托罗拉。 摩托罗拉集团将主要从事高频设备测试。 最后,瑞典查尔默斯大学的Willander教授团队将提供SiC材料,并将积极参与SiC和III-N器件的制造和表征。 因此,可以进行计算与实验的直接比较,极大地帮助了模型的改进,并确保它们解决了现有技术设备中面临的问题。 与拟议项目相关的主要研究者的其他合作涉及霍尼韦尔公司,洛克希德·马丁公司(III-N器件)和北电(SiC器件)。 ***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
P.Paul Ruden其他文献
P.Paul Ruden的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('P.Paul Ruden', 18)}}的其他基金
Organic Semiconductor Spin Injection and Spin Transport
有机半导体自旋注入和自旋输运
- 批准号:
0724886 - 财政年份:2007
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
GOALI: High Field Transport and Device Modeling of Carbon Nanotube Structures
GOALI:碳纳米管结构的高场输运和器件建模
- 批准号:
0243884 - 财政年份:2003
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Study of Carrier Transport and Impact Ionization in GaN/AlGaN
GaN/AlGaN 中载流子传输和碰撞电离的研究
- 批准号:
9408479 - 财政年份:1994
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Demonstration of Exchange Induced Instability in Quantum Wire Structures
量子线结构中交换引起的不稳定性的演示
- 批准号:
9312195 - 财政年份:1993
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
相似国自然基金
全钒液流电池负极V(II)/V(III)电化学氧化还原的催化机理研究
- 批准号:2025JJ50094
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
MXene/nZVI@FH材料微域层界面调控水中砷(III)氧化迁移机制
- 批准号:2025JJ50319
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
硅基III-V族亚微米线激光器的光场模式调控与耦合机理研究
- 批准号:JCZRQN202501004
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
吡咯烷生物碱所致肝窦阻塞综合征III区肝损伤的新机制——局部氨代谢紊乱
- 批准号:JCZRYB202500652
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
HOXC8/OPN/CD44/EGFR轴介导的奥沙利铂耐药性在III期右半结肠癌耐药进展中的研究
- 批准号:2025JJ50694
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AI结合超声原始射频信号评估Bethesda III/IV类甲状腺肿瘤包膜和血管侵犯研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
硫化砷靶向VPS4B-ESCRT-III调控自噬溶酶体通路逆转三阴性乳腺癌顺铂耐药性的研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
ASPGR与MRC2双受体介导铱(III)配合物
脂质体抗肝肿瘤研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
Ap-Exo III 联合模式识别构建降尿酸药
物筛选新方法的研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
光合绿丝菌替代复合物III在呼吸链中的分子机制
- 批准号:MS25C050010
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
CAREER: A multi-scale and hierarchical computational framework to model III-nitride devices operating in the near-terahertz regime
职业:多尺度和分层计算框架,用于模拟在近太赫兹区域运行的 III 族氮化物器件
- 批准号:
2237663 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: Heterogeneous Integration of III-Nitride and Boron Arsenide for Enhanced Thermal and Electronic Performance
合作研究:FuSe:III族氮化物和砷化硼的异质集成以增强热和电子性能
- 批准号:
2329109 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: Heterogeneous Integration of III-Nitride and Boron Arsenide for Enhanced Thermal and Electronic Performance
合作研究:FuSe:III族氮化物和砷化硼的异质集成以增强热和电子性能
- 批准号:
2329110 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Laser lifted off III-Nitride and GaN circuits to enable next generation chargers, electric vehicle drives, and wearable electronics
激光剥离 III 族氮化物和 GaN 电路,以实现下一代充电器、电动汽车驱动器和可穿戴电子产品
- 批准号:
2246582 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: Heterogeneous Integration of III-Nitride and Boron Arsenide for Enhanced Thermal and Electronic Performance
合作研究:FuSe:III族氮化物和砷化硼的异质集成以增强热和电子性能
- 批准号:
2329107 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: Heterogeneous Integration of III-Nitride and Boron Arsenide for Enhanced Thermal and Electronic Performance
合作研究:FuSe:III族氮化物和砷化硼的异质集成以增强热和电子性能
- 批准号:
2329108 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Development of full-color III-nitride laser diodes
全色III族氮化物激光二极管的研制
- 批准号:
572125-2022 - 财政年份:2022
- 资助金额:
$ 24万 - 项目类别:
Alliance Grants
CAREER: Engineering Ultra-Wide Bandgap III-Nitride Devices for Highly Efficient and Robust Electronics
职业:设计超宽带隙 III 族氮化物器件,实现高效、稳健的电子产品
- 批准号:
2145340 - 财政年份:2022
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Improving the coherence of III-nitride quantum dots
提高III族氮化物量子点的相干性
- 批准号:
22K04179 - 财政年份:2022
- 资助金额:
$ 24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
III-nitride selective epitaxial nanostructures: From full-color light sources to solid-state single photon sources
III族氮化物选择性外延纳米结构:从全色光源到固态单光子源
- 批准号:
RGPIN-2021-04250 - 财政年份:2022
- 资助金额:
$ 24万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




