Microparticle Photonics: Frequency Control and Linewidth Quenching of Semiconductor Lasers Using Optical Feedback from Spherical Micro-Cavities

微粒光子学:利用球形微腔的光学反馈对半导体激光器进行频率控制和线宽淬火

基本信息

  • 批准号:
    9818596
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing grant
  • 财政年份:
    1998
  • 资助国家:
    美国
  • 起止时间:
    1998-03-15 至 2001-02-28
  • 项目状态:
    已结题

项目摘要

9818596GriffelFrequency stability and the optical linewidth of semiconductor laser are critical parameters, affecting a wide range of applications such as coherent and optical communication system performance, wavelength division multiplexing (VMM) based photonic switching and communication systems, room-temperature spectral-hole-burning optical memory, interferometric sensing, path length measurement, and high-resolution spectroscopy. For many applications the operating frequency of a single longitudinal mode (SLM) laser such as the distributed feedback laser (DFB),.or the distributed Bragg reflector laser (DBR), is not stable enough. It is susceptible to thermal fluctuations, and intensity as well as spatial variations of carrier concentration cause chirping. In addition, a typical DFB laser, operating at 1.5 microns has a linewidth of the order of 3- 1 0 MHz, while most coherent optical communication systems require sub MHz linewidth. Several techniques have been used in the past to lock the operating frequency and reduce the optical linewidth, among which are electronic or optical feedback. Reduction of the optical linewidth to the kHz range has successfully been demonstrated using bulk external cavity semiconductor laser. Another approach is to couple the laser cavity to a properly detuned external high finesse resonator. Frequency locking with dramatic linewidth reduction by a factor of ~I 000, using coupling of a semiconductor laser to high-finesse Fabry-Perot etalon, has been demonstrated. However, in spite of impressive reduction of the laser noise, most of these techniques are cumbersome, require a bulky, laboratory-Lype optical set-up, and are sensitive to cantankerous parameters, such as the phase of the reflected signal, which is strongly affected by niicrophonic effects. In addition, due to the length of the cavity required for the set-ups, the longitudinal mode spacing is small and SLM operation is difficult to realize. As a result, these techniques were primarily used only for experimental set-ups.In this project, we propose to develop and carry out theoretical and experimental studies of a novel scheme for realizing frequency locking and linewidth reduction of semiconductor lasers in a small scale geometry. The approach involves the use of a new type of optical resonator system, based on a very high Q microsphere cavity. It has been known for some time that micrometer sized dielectric spheres act as high-Q resonators, with electromagnetic energy stored in form of spherical cavity modes confined around the sphere, near its surface. Employment of such modes in an axially-symmetric dielectric body results in sharp resonance peaks named "morphology dependent resonances" or MDR'S. The Q-factor of these resonances is projected to approach 10 8 at T = 77=degrees K, and exceed 10 9=at T=4 K. For comparison, a Fabry-Perot etalon type resonator, comprised o= f two mirrors of 98% reflectivity separated 10 cm apart would result in a Q factor of 3X10 7. These resonance peaks of the micro-spheres occur at specific values of the sphere size parameter X, where X = 2*Pi*a/lambda; a is the radius of the sphere, and lambda is the optical wavelength. Using this phenomenon, cavity effects such as optical bistability, and lasing have been reported. In our case, the micro-sphere can be used as a detuned loading for a semiconductor laser, causing the oscillating field to lock on to one of the MDR's and quench its linewidth at the same time. This approach may achieve extremely narrow linewidth in a system that is stable, cost effective, and not larger than the laser itself.In addition, the ability to lock into and measure MDR's of single stationary micro-spheres opens up the prospect of performing extremely sensitive adsorption and reaction measurements between species bonded to the micro-sphere surface and reagents in a surrounding solution. With modest Q's of 10 6, a layer having a subatomic thickness (~O.1 Angstrom) may be detected on a micro-sphere with r=3D 10 microns. Since this thicknes= s is considerably less than the molecular size of a typical antigen molecule, the possibility of observing small fractions of a monolayer is reasonable and thus paves the way to new immunological testing techniques.
半导体激光器的频率稳定性和光学线宽是关键参数,影响广泛的应用,如相干和光学通信系统的性能,基于波分复用(VMM)的光子交换和通信系统,室温光谱烧孔光存储器,干涉传感,路径长度测量和高分辨率光谱学。 对于许多应用,诸如分布反馈激光器(DFB)或分布布拉格反射器激光器(DBR)的单纵模(SLM)激光器的工作频率不够稳定。 它易受热波动的影响,并且载流子浓度的强度以及空间变化引起啁啾。 此外,在1.5微米处操作的典型DFB激光器具有3- 10 MHz量级的线宽,而大多数相干光通信系统需要亚MHz线宽。 过去已经使用了几种技术来锁定工作频率并减小光学线宽,其中包括电子或光学反馈。 使用体外腔半导体激光器已经成功地证明了光学线宽减小到kHz范围。 另一种方法是将激光腔耦合到适当失谐的外部高精细度谐振器。 利用半导体激光器与高精细度法布里-珀罗标准具的耦合,实现了线宽减小约1000倍的频率锁定。 然而,尽管激光噪声的降低令人印象深刻,但这些技术中的大多数都是笨重的,需要庞大的实验室型光学装置,并且对诸如反射信号的相位等不稳定的参数敏感,反射信号的相位受麦克风效应的影响很大。 此外,由于设置所需的腔的长度,纵模间隔很小,SLM操作难以实现。 因此,这些技术主要只用于实验setups.In本项目中,我们建议开发和进行一种新的方案,实现频率锁定和线宽减小的半导体激光器在一个小规模的几何形状的理论和实验研究。 该方法涉及使用一种新型的光学谐振腔系统,基于一个非常高的Q微球腔。 一段时间以来,已知微米尺寸的电介质球体充当高Q谐振器,其中电磁能量以球形腔模式的形式存储,该球形腔模式被限制在球体周围,靠近其表面。 在轴对称介电体中采用这种模式导致称为“形态依赖共振”或MDR的尖锐共振峰。 预计这些谐振的Q因子在T = 77=度K时接近10 8,在T=4 K时超过10 9=。为了比较,法布里-珀罗标准具型谐振器,包括o= f两个相隔10 cm的98%反射率的反射镜,将导致3 × 10 - 7的Q因子。微球的这些共振峰出现在球尺寸参数X的特定值处,其中X = 2*Pi*a/lambda; a是球的半径,并且lambda是光波长。 利用这种现象,已经报道了诸如光学双稳态和激光的腔效应。 在我们的例子中,微球可以用作半导体激光器的失谐负载,使振荡场锁定在MDR的一个,并在同一时间淬火其线宽。 这种方法可以在一个稳定的、成本有效的并且不大于激光器本身的系统中实现极窄的线宽。此外,锁定和测量单个固定微球的MDR的能力开辟了在结合到微球表面的物质和周围溶液中的试剂之间进行极灵敏的吸附和反应测量的前景。 在10 6的适度Q的情况下,可以在r=3D 10微米的微球上检测到具有亚原子厚度(~ 0.1埃)的层。 由于该厚度显著小于典型抗原分子的分子大小,因此观察单层的小部分的可能性是合理的,从而为新的免疫学测试技术铺平了道路。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Haim Grebel其他文献

Electrochemical cells with intermediate capacitor elements
  • DOI:
    10.1016/j.cplett.2015.10.009
  • 发表时间:
    2015-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Haim Grebel;Akshat Patel
  • 通讯作者:
    Akshat Patel

Haim Grebel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Haim Grebel', 18)}}的其他基金

Sensors: Narrow Band, Broad Band and Low Pass Metal Mesh Filters for sensors in the IR to THz region and instant multiple wavelength detection of chemical agents [NJIT_FY05_015]
传感器:用于 IR 至 THz 区域传感器的窄带、宽带和低通金属网滤光片以及化学试剂的即时多波长检测 [NJIT_FY05_015]
  • 批准号:
    0514361
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Artificial Dielectrics: Hybrid Structures for MID-IR Applications
人造电介质:用于中红外应用的混合结构
  • 批准号:
    9820200
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: Programmable Chip-Scale Quantum-Photonics Platform Based on Frequency-Comb Cluster-States for Multicasting Quantum Networks
合作研究:基于频梳簇态的多播量子网络的可编程芯片级量子光子平台
  • 批准号:
    2326780
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
High-dimensional Frequency Gates in Integrated Photonics for Scalable Quantum Interconnects
用于可扩展量子互连的集成光子学中的高维频率门
  • 批准号:
    2034019
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Programmable Chip-Scale Quantum-Photonics Platform Based on Frequency-Comb Cluster-States for Multicasting Quantum Networks
合作研究:基于频梳簇态的多播量子网络的可编程芯片级量子光子平台
  • 批准号:
    1920742
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Programmable chip-scale quantum photonics platform based on frequency-comb cluster-states for multicasting quantum networks
合作研究:基于频梳簇态的可编程芯片级量子光子平台,用于多播量子网络
  • 批准号:
    1919355
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
On-chip radio frequency photonics for advanced signal processing
用于高级信号处理的片上射频光子学
  • 批准号:
    DP180103589
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Development of backward terahertz-wave parametric oscillator for boundary photonics bridging the frequency gap between millimeter and optical waves
开发用于边界光子学的后向太赫兹波参量振荡器,弥合毫米波和光波之间的频率差距
  • 批准号:
    18H01906
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of compact frequency stabilized laser using molecule and application for microwave photonics
利用分子研制紧凑型稳频激光器及其在微波光子学中的应用
  • 批准号:
    15K17479
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Multimode integrated time-frequency quantum photonics
多模集成时频量子光子学
  • 批准号:
    EP/K026534/1
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Grant
ACOUSTO-OPTO-MECHANICAL SYSTEMS in PIEZOELECTRIC ALUMINUM NITRIDE NANOFILMS FOR RADIO FREQUENCY PHOTONICS
用于射频光子学的压电氮化铝纳米薄膜中的声光机械系统
  • 批准号:
    1201659
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Efficient spectrally accurate global basis methods for high frequency wave scattering, chaotic eigenmodes, and photonics
适用于高频波散射、混沌本征模和光子学的高效光谱精确全局基础方法
  • 批准号:
    0811005
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了