Free Boundary Problems in Partial Differential Equations
偏微分方程中的自由边界问题
基本信息
- 批准号:9970522
- 负责人:
- 金额:$ 3.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-06-15 至 2000-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In free boundary problems one seeks to determine a solution of PDE system in a domain, as well as the boundary of the domain itself; naturally a supplementary condition is imposed which connects the unknown boundary (the "free boundary") to the unknown solution. This condition arises from the physical laws which underlie the model. Some general theories developed as researchers tried to resolve special free boundary problems. For instance, the theory of variational inequalities evolved from the study of contact problems in elasticity and from solidification problems. The present project is ongoing work, primarily in two areas: (1) Propagation of cracks, where the PDE is a solution of the biharmonic equation, with zero traction along the crack, and the crack'9s tip propagate in time in accordance with mode I or mode II of fracture mechanic laws; (2) A system of two reaction-diffusion equations for the pressure of tumor cells and nutrient concentration within an evolving tumor, with a conservation law at the boundary. The objective is to derive existence, uniqueness, stability and qualitative properties. These are new types of free boundary problems not covered by present theories.The results of the first project will lead to better understanding of how cracks propagate in elastic material, a problem which is becoming increasingly important in the wiring of circuit boards and in aging airplane panels, for example. The second project deals with simple tumor models that mathematical biologists have developed in recent years. Our research will provide some understanding of how the size and shape of the tumor will evolve in time.
在自由边界问题中,人们寻求确定域中偏微分方程系统的解以及域本身的边界;自然会施加一个补充条件,将未知边界(“自由边界”)连接到未知解。 这个条件是由作为模型基础的物理定律引起的。 随着研究人员试图解决特殊的自由边界问题,一些一般理论得到了发展。 例如,变分不等式理论是从弹性接触问题和固化问题的研究发展而来的。 本课题的主要研究内容包括两个方面:(1)裂纹的扩展,其中偏微分方程是双调和方程的一个解,沿裂纹沿着方向的牵引力为零,裂纹尖端按断裂力学规律的Ⅰ型或Ⅱ型随时间扩展;(2)一个由两个反应扩散方程组成的系统,该系统描述了肿瘤细胞的压力和肿瘤内营养物质的浓度,边界上存在守恒律。 目标是得到存在性、唯一性、稳定性和定性性质。 这些都是目前理论所没有涉及的新型自由边界问题。第一个项目的结果将导致更好地理解裂纹如何在弹性材料中传播,这是一个在电路板布线和老化飞机面板等方面变得越来越重要的问题。 第二个项目涉及数学生物学家近年来开发的简单肿瘤模型。 我们的研究将提供一些关于肿瘤的大小和形状如何随时间演变的理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Avner Friedman其他文献
Boundary behavior of solutions of variational inequalities for elliptic operators
- DOI:
10.1007/bf00281336 - 发表时间:
1967-01-01 - 期刊:
- 影响因子:2.400
- 作者:
Avner Friedman - 通讯作者:
Avner Friedman
Optimal design of an optical lens
- DOI:
10.1007/bf00275875 - 发表时间:
1987-06-01 - 期刊:
- 影响因子:2.400
- 作者:
Avner Friedman;Bryce McLeod - 通讯作者:
Bryce McLeod
A filtration problem in a porous medium with variable permeability
- DOI:
10.1007/bf02413797 - 发表时间:
1977-12-01 - 期刊:
- 影响因子:0.900
- 作者:
Claudio Baiocchi;Avner Friedman - 通讯作者:
Avner Friedman
Optimal control for the dam problem
- DOI:
10.1007/bf01442199 - 发表时间:
1985-04-01 - 期刊:
- 影响因子:1.700
- 作者:
Avner Friedman;Daniel Yaniro - 通讯作者:
Daniel Yaniro
Computation of saddle points for differential games of pursuit and evasion
- DOI:
10.1007/bf00250316 - 发表时间:
1971-01-01 - 期刊:
- 影响因子:2.400
- 作者:
Avner Friedman - 通讯作者:
Avner Friedman
Avner Friedman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Avner Friedman', 18)}}的其他基金
Mathematical Biosciences Institute
数学生物科学研究所
- 批准号:
0112050 - 财政年份:2002
- 资助金额:
$ 3.39万 - 项目类别:
Cooperative Agreement
Mathematical Sciences: Partial Differential Equations: Free Boundary Problems
数学科学:偏微分方程:自由边界问题
- 批准号:
9703842 - 财政年份:1997
- 资助金额:
$ 3.39万 - 项目类别:
Standard Grant
WORKSHOPS: Institute for Mathematics and Its Applications "Initiative in Materials Science"; January 24-26, 1996 and February 1-3, 1996; Minneapolis, Minnesota
研讨会:数学及其应用研究所“材料科学倡议”;
- 批准号:
9626139 - 财政年份:1996
- 资助金额:
$ 3.39万 - 项目类别:
Standard Grant
Conference: Large Scale Optimization, July 10 - 28, 1995 at the University of Minnesota, Minneapolis, MN
会议:大规模优化,1995 年 7 月 10 日至 28 日,明尼苏达州明尼阿波利斯市明尼苏达大学
- 批准号:
9512059 - 财政年份:1995
- 资助金额:
$ 3.39万 - 项目类别:
Standard Grant
Mathematical Sciences: Partial Differential Equations: Free Boundary Problems
数学科学:偏微分方程:自由边界问题
- 批准号:
9401251 - 财政年份:1994
- 资助金额:
$ 3.39万 - 项目类别:
Continuing Grant
Workshop on Systems and Control Theory for Power Systems. To be held in Minneapolis, Minnesota March 15-19, 1993.
电力系统系统和控制理论研讨会。
- 批准号:
9302229 - 财政年份:1993
- 资助金额:
$ 3.39万 - 项目类别:
Standard Grant
相似国自然基金
水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
- 批准号:32070202
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
相似海外基金
Parabolic and elliptic boundary value and free boundary problems
抛物线和椭圆边值以及自由边界问题
- 批准号:
2349846 - 财政年份:2024
- 资助金额:
$ 3.39万 - 项目类别:
Standard Grant
Well-Posedness and Singularity Formation in Applied Free Boundary Problems
应用自由边界问题中的适定性和奇异性形成
- 批准号:
2307638 - 财政年份:2023
- 资助金额:
$ 3.39万 - 项目类别:
Standard Grant
Shape Optimization, Free Boundary Problems, and Geometric Measure Theory
形状优化、自由边界问题和几何测量理论
- 批准号:
2247096 - 财政年份:2023
- 资助金额:
$ 3.39万 - 项目类别:
Standard Grant
Free Boundary Problems for Aggregation Phenomena and other Partial Differential Equations
聚集现象和其他偏微分方程的自由边界问题
- 批准号:
2307342 - 财政年份:2023
- 资助金额:
$ 3.39万 - 项目类别:
Standard Grant
Dynamical analysis of foliated structure in free boundary problems
自由边界问题中叶状结构的动力学分析
- 批准号:
22KK0230 - 财政年份:2023
- 资助金额:
$ 3.39万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Mathematical Analysis of Fluid Free Boundary Problems
无流体边界问题的数学分析
- 批准号:
2153992 - 财政年份:2022
- 资助金额:
$ 3.39万 - 项目类别:
Standard Grant
Asymptotic analysis and behavior of free boundary for nonlinear parabolic problems
非线性抛物线问题的渐近分析和自由边界行为
- 批准号:
22K03387 - 财政年份:2022
- 资助金额:
$ 3.39万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Regularity and Stability Analysis of Free-Boundary Problems in Fluid Dynamics
流体动力学自由边界问题的规律性和稳定性分析
- 批准号:
2205710 - 财政年份:2022
- 资助金额:
$ 3.39万 - 项目类别:
Standard Grant
Probabilistic Approach to Singular Free Boundary Problems and Applications
奇异自由边界问题的概率方法及其应用
- 批准号:
2108680 - 财政年份:2021
- 资助金额:
$ 3.39万 - 项目类别:
Continuing Grant