Free Boundary Problems
自由边界问题
基本信息
- 批准号:0098520
- 负责人:
- 金额:$ 9.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-06-01 至 2003-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We plan to study a variety of free boundary problems. The first one dealswith growing polymeric crystallines. The unknowns are temperature in themelt and the growing surface. The speed of the free boundary is a givenfunction of the temperature, and free boundary points move in such adirection so as to minimize the travel time. We wish to establish theexistence of the solution and to determine the shape of the free boundary.The second problem deals with non-Newtonian jets. We want to approach itvia nonlinear perturbation of the linearized case, a case we have recentlystudied. The next problem is to develop a general bifurcation theory forfree boundary problems. Here we expect to be guided by recent work thatwe have done dealing with special models that arise in mathematicalbiology. In order to determine the stability of the bifurcation, we shallfirst study the asymptotic behavior of solutions of free boundaryproblems, including the Hele-Shaw problem and the evolution of viscousdrops. Subsequently we shall consider the more complicated problems thatarise in mathematical biology, such as the evolution of tumors and ofprotocells. Finally, we shall study the evolution of cracks in elasticmedia. We expect to utilize formulas that we have derived for theevolution of the stress intensity factors.Free boundary problems deal with solving partial differential equations ina domain, a part of whose boundary is unknown in advance; that portion ofthe boundary is called a free boundary. In addition to the usuallyprescribed initial and boundary conditions, an additional condition isimposed at the free boundary, and one seeks to determine both the freeboundary and the solution to the differential equations. A seeminglysmall change in the conditions imposed at the free boundary often resultin, technically, an entirely different problem. Special examples havehistorically guided research in this field; some of the most commonlyknown examples are flow of liquid in contact with air, air streams behindan aircraft, solidification of steel, and melting of solid. Specialexamples motivated by physical models continue to be a driving force inthe development of the field. The present proposal focuses on severaldifferent problems dealing with questions such as crystallization ofpolymers, jet flows for non-Newtonian fluid (e.g. inkjets), bifurcation offree boundary problems arising in biology, nonlinear stability, andpropagation of cracks in elastic media. In all these problems, the goalis to prove that there is a mathematical solution to the scientificproblem and to determine properties of the free boundary.
我们计划研究各种自由边界问题。第一个是关于聚合物晶体的生长。未知的是自身的温度和生长的表面。自由边界的速度是温度的给定函数,并且自由边界点沿这样一个方向运动,使得旅行时间最小。我们希望确定解的存在性,并确定自由边界的形状。第二个问题涉及非牛顿射流。我们想通过线性化情况的非线性摄动来接近它,这是我们最近研究过的一种情况。下一个问题是发展自由边界问题的一般分岔理论。在这里,我们期望得到我们最近处理数学生物学中出现的特殊模型的工作的指导。为了确定分岔的稳定性,我们首先研究了自由边界问题解的渐近行为,包括Hele-Shaw问题和粘滴的演化。随后,我们将考虑数学生物学中出现的更复杂的问题,例如肿瘤和原始细胞的进化。最后,我们将研究弹性介质中裂纹的演化。我们期望利用我们为应力强度因子的演化而导出的公式。自由边界问题是在部分边界事先未知的区域内求解偏微分方程的问题;这部分边界称为自由边界。除了通常规定的初始条件和边界条件外,在自由边界处施加了一个附加条件,人们试图确定自由边界和微分方程的解。在自由边界施加的条件上一个看似很小的变化,从技术上讲,往往会导致一个完全不同的问题。特殊的例子在历史上指导了这一领域的研究;一些最常见的例子是液体与空气接触的流动、飞机背后的气流、钢的凝固和固体的熔化。由物理模型驱动的特殊例子继续成为该领域发展的推动力。目前的建议侧重于几个不同的问题,如聚合物的结晶,非牛顿流体(如喷墨)的射流,生物学中出现的分岔自由边界问题,非线性稳定性,以及弹性介质中裂纹的传播。在所有这些问题中,目标是证明科学问题有数学解,并确定自由边界的性质。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Avner Friedman其他文献
Boundary behavior of solutions of variational inequalities for elliptic operators
- DOI:
10.1007/bf00281336 - 发表时间:
1967-01-01 - 期刊:
- 影响因子:2.400
- 作者:
Avner Friedman - 通讯作者:
Avner Friedman
Optimal design of an optical lens
- DOI:
10.1007/bf00275875 - 发表时间:
1987-06-01 - 期刊:
- 影响因子:2.400
- 作者:
Avner Friedman;Bryce McLeod - 通讯作者:
Bryce McLeod
A filtration problem in a porous medium with variable permeability
- DOI:
10.1007/bf02413797 - 发表时间:
1977-12-01 - 期刊:
- 影响因子:0.900
- 作者:
Claudio Baiocchi;Avner Friedman - 通讯作者:
Avner Friedman
Optimal control for the dam problem
- DOI:
10.1007/bf01442199 - 发表时间:
1985-04-01 - 期刊:
- 影响因子:1.700
- 作者:
Avner Friedman;Daniel Yaniro - 通讯作者:
Daniel Yaniro
Computation of saddle points for differential games of pursuit and evasion
- DOI:
10.1007/bf00250316 - 发表时间:
1971-01-01 - 期刊:
- 影响因子:2.400
- 作者:
Avner Friedman - 通讯作者:
Avner Friedman
Avner Friedman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Avner Friedman', 18)}}的其他基金
Mathematical Biosciences Institute
数学生物科学研究所
- 批准号:
0112050 - 财政年份:2002
- 资助金额:
$ 9.22万 - 项目类别:
Cooperative Agreement
Free Boundary Problems in Partial Differential Equations
偏微分方程中的自由边界问题
- 批准号:
9970522 - 财政年份:1999
- 资助金额:
$ 9.22万 - 项目类别:
Standard Grant
Mathematical Sciences: Partial Differential Equations: Free Boundary Problems
数学科学:偏微分方程:自由边界问题
- 批准号:
9703842 - 财政年份:1997
- 资助金额:
$ 9.22万 - 项目类别:
Standard Grant
WORKSHOPS: Institute for Mathematics and Its Applications "Initiative in Materials Science"; January 24-26, 1996 and February 1-3, 1996; Minneapolis, Minnesota
研讨会:数学及其应用研究所“材料科学倡议”;
- 批准号:
9626139 - 财政年份:1996
- 资助金额:
$ 9.22万 - 项目类别:
Standard Grant
Conference: Large Scale Optimization, July 10 - 28, 1995 at the University of Minnesota, Minneapolis, MN
会议:大规模优化,1995 年 7 月 10 日至 28 日,明尼苏达州明尼阿波利斯市明尼苏达大学
- 批准号:
9512059 - 财政年份:1995
- 资助金额:
$ 9.22万 - 项目类别:
Standard Grant
Mathematical Sciences: Partial Differential Equations: Free Boundary Problems
数学科学:偏微分方程:自由边界问题
- 批准号:
9401251 - 财政年份:1994
- 资助金额:
$ 9.22万 - 项目类别:
Continuing Grant
Workshop on Systems and Control Theory for Power Systems. To be held in Minneapolis, Minnesota March 15-19, 1993.
电力系统系统和控制理论研讨会。
- 批准号:
9302229 - 财政年份:1993
- 资助金额:
$ 9.22万 - 项目类别:
Standard Grant
相似国自然基金
水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
- 批准号:32070202
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
相似海外基金
Parabolic and elliptic boundary value and free boundary problems
抛物线和椭圆边值以及自由边界问题
- 批准号:
2349846 - 财政年份:2024
- 资助金额:
$ 9.22万 - 项目类别:
Standard Grant
Well-Posedness and Singularity Formation in Applied Free Boundary Problems
应用自由边界问题中的适定性和奇异性形成
- 批准号:
2307638 - 财政年份:2023
- 资助金额:
$ 9.22万 - 项目类别:
Standard Grant
Shape Optimization, Free Boundary Problems, and Geometric Measure Theory
形状优化、自由边界问题和几何测量理论
- 批准号:
2247096 - 财政年份:2023
- 资助金额:
$ 9.22万 - 项目类别:
Standard Grant
Free Boundary Problems for Aggregation Phenomena and other Partial Differential Equations
聚集现象和其他偏微分方程的自由边界问题
- 批准号:
2307342 - 财政年份:2023
- 资助金额:
$ 9.22万 - 项目类别:
Standard Grant
Dynamical analysis of foliated structure in free boundary problems
自由边界问题中叶状结构的动力学分析
- 批准号:
22KK0230 - 财政年份:2023
- 资助金额:
$ 9.22万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Mathematical Analysis of Fluid Free Boundary Problems
无流体边界问题的数学分析
- 批准号:
2153992 - 财政年份:2022
- 资助金额:
$ 9.22万 - 项目类别:
Standard Grant
Asymptotic analysis and behavior of free boundary for nonlinear parabolic problems
非线性抛物线问题的渐近分析和自由边界行为
- 批准号:
22K03387 - 财政年份:2022
- 资助金额:
$ 9.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Regularity and Stability Analysis of Free-Boundary Problems in Fluid Dynamics
流体动力学自由边界问题的规律性和稳定性分析
- 批准号:
2205710 - 财政年份:2022
- 资助金额:
$ 9.22万 - 项目类别:
Standard Grant
Probabilistic Approach to Singular Free Boundary Problems and Applications
奇异自由边界问题的概率方法及其应用
- 批准号:
2108680 - 财政年份:2021
- 资助金额:
$ 9.22万 - 项目类别:
Continuing Grant