Rigidity Phenomena in Differential Geometry and Dynamical Systems
微分几何和动力系统中的刚性现象
基本信息
- 批准号:9971556
- 负责人:
- 金额:$ 9.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-08-01 至 2003-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractSpatzierThe research proposed lies at the interface of dynamical systems and differential geometry. Its principal goal is the investigation of the dynamical and geometric structures of "higher rank" systems. Such systems naturally appear both in dynamical systems and geometry. In particular, the investigator will study rigidity properties of hyperbolic actions of higher rank abelian and semisimple Lie groups and their lattices with the ultimate goal of classifying such systems. The investigator also plans to investigate Riemannian manifolds (especially higher rank ones) and their geodesic flows. Geometric, dynamical and group theoretic tools will be used in this research.Dynamical systems and ergodic theory are relatively new fields that investigate the evolution of a physical or mathematical system over time (e.g. turbulence in a fluid flow). New ideas and concepts from dynamics (e.g. chaos, fractals) have changed our perception of the world fundamentally. Dynamics and ergodic theory provide the mathematical tools and analysis for these investigations. Dynamical systems have had a major impact on the sciences and engineering. Symbolic dynamics for instance has been instrumental in developing efficient and safe codes for computer science. Tools and ideas from smooth dynamics are used as far afield as cell biology and meteorology. Geometry is one of the oldest fields in mathematics, and generally studies curves, surfaces and their higher dimensional analogues, their shapes, shortest paths, and maps between such spaces. Differential geometry had its roots in cartography, and is now studied for aesthetic reasons and its close ties with physics and other sciences and applied areas (computer vision e.g.). Geometry and dynamics are closely related as some important dynamical systems originate from geometry, and geometry also provides tools to study dynamical systems. The main goal of this project studies when two dynamical systems commute, i.e. when one system is unaffected by the changes brought on by the other. Important examples of such systems arise from geometry.
摘要Spatzier的研究建议在于接口的动力系统和微分几何。 它的主要目标是调查的动力学和几何结构的“高秩”系统。 这样的系统自然地出现在动力系统和几何学中。 特别是,研究人员将研究高秩阿贝尔和半单李群及其格的双曲作用的刚性性质,最终目标是对此类系统进行分类。 研究者还计划研究黎曼流形(特别是高阶流形)及其测地线流。 本研究将使用几何、动力学和群论工具。动力系统和遍历理论是研究物理或数学系统随时间演变的相对较新的领域(例如流体流动中的湍流)。 来自动力学的新思想和概念(例如混沌,分形)从根本上改变了我们对世界的看法。 动力学和遍历理论为这些研究提供了数学工具和分析。动力系统对科学和工程产生了重大影响。 例如,符号动力学在为计算机科学开发高效和安全的代码方面发挥了重要作用。 光滑动力学的工具和思想被广泛应用于细胞生物学和气象学。 几何学是数学中最古老的领域之一,通常研究曲线,曲面及其高维类似物,它们的形状,最短路径以及这些空间之间的映射。 微分几何起源于制图学,现在由于美学原因以及与物理学和其他科学和应用领域(例如计算机视觉)的密切联系而被研究。 几何与动力学有着密切的联系,一些重要的动力系统都起源于几何,而几何也为研究动力系统提供了工具。 该项目的主要目标是研究两个动力系统何时发生交换,即当一个系统不受另一个系统变化的影响时。这种系统的重要例子来自几何学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ralf Spatzier其他文献
Ralf Spatzier的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ralf Spatzier', 18)}}的其他基金
Rigidity Properties in Dynamics and Geometry
动力学和几何中的刚性特性
- 批准号:
2003712 - 财政年份:2020
- 资助金额:
$ 9.73万 - 项目类别:
Standard Grant
Rigidity Phenomena in Geometry and Dynamics
几何和动力学中的刚性现象
- 批准号:
1607260 - 财政年份:2016
- 资助金额:
$ 9.73万 - 项目类别:
Standard Grant
Rigidity Phenomena in Geometry and Dynamics
几何和动力学中的刚性现象
- 批准号:
1307164 - 财政年份:2013
- 资助金额:
$ 9.73万 - 项目类别:
Continuing Grant
EMSW21-RTG: Training the Research Workforce in Geometry, Topology and Dynamics
EMSW21-RTG:几何、拓扑和动力学方面的研究人员培训
- 批准号:
1045119 - 财政年份:2011
- 资助金额:
$ 9.73万 - 项目类别:
Continuing Grant
Collaborative Research: Research, Disseminations, and Faculty Development of Inquiry-Based Learning (IBL) Methods in the Teaching and Learning of Mathematics
合作研究:数学教学中探究式学习(IBL)方法的研究、传播和教师发展
- 批准号:
0920057 - 财政年份:2009
- 资助金额:
$ 9.73万 - 项目类别:
Standard Grant
Rigidity Phenomena in Geometry and Dynamics
几何和动力学中的刚性现象
- 批准号:
0906085 - 财政年份:2009
- 资助金额:
$ 9.73万 - 项目类别:
Standard Grant
EMSW21-RTG: Training the Research Workforce in Geometry, Topology and Dynamics
EMSW21-RTG:几何、拓扑和动力学方面的研究人员培训
- 批准号:
0602191 - 财政年份:2006
- 资助金额:
$ 9.73万 - 项目类别:
Continuing Grant
Rigidity Phenomena in Geometry and Dynamics
几何和动力学中的刚性现象
- 批准号:
0604857 - 财政年份:2006
- 资助金额:
$ 9.73万 - 项目类别:
Standard Grant
Inquiry-Based Learning in Mathematics at the University of Michigan
密歇根大学数学探究式学习
- 批准号:
0536464 - 财政年份:2006
- 资助金额:
$ 9.73万 - 项目类别:
Standard Grant
Rigidity Phenomena in Geometry and Dynamics
几何和动力学中的刚性现象
- 批准号:
0203735 - 财政年份:2002
- 资助金额:
$ 9.73万 - 项目类别:
Continuing Grant
相似海外基金
Free Boundary Problems for Aggregation Phenomena and other Partial Differential Equations
聚集现象和其他偏微分方程的自由边界问题
- 批准号:
2307342 - 财政年份:2023
- 资助金额:
$ 9.73万 - 项目类别:
Standard Grant
Nonlinear partial differential equations and propagation phenomena
非线性偏微分方程和传播现象
- 批准号:
DP220101820 - 财政年份:2022
- 资助金额:
$ 9.73万 - 项目类别:
Discovery Projects
Concentration phenomena in nonlinear partial differential equations.
非线性偏微分方程中的浓度现象。
- 批准号:
EP/T008458/1 - 财政年份:2020
- 资助金额:
$ 9.73万 - 项目类别:
Research Grant
Nonlinear Partial Differential Equations, Concentration Phenomena, and Applications
非线性偏微分方程、浓度现象及应用
- 批准号:
1000228597-2012 - 财政年份:2020
- 资助金额:
$ 9.73万 - 项目类别:
Canada Research Chairs
Nonlinear Partial Differential Equations, Concentration Phenomena, and Applications
非线性偏微分方程、浓度现象及应用
- 批准号:
1000228597-2012 - 财政年份:2019
- 资助金额:
$ 9.73万 - 项目类别:
Canada Research Chairs
Study of blowup phenomena for partial differential equations with non-gauge invariant power type nonlinearities
非规范不变幂型非线性偏微分方程的爆炸现象研究
- 批准号:
19J00334 - 财政年份:2019
- 资助金额:
$ 9.73万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Nonlinear Phenomena in Stochastic and Deterministic Dispersive Partial Differential Equations
随机和确定性色散偏微分方程中的非线性现象
- 批准号:
1927258 - 财政年份:2018
- 资助金额:
$ 9.73万 - 项目类别:
Continuing Grant
Nonlinear Phenomena in Stochastic and Deterministic Dispersive Partial Differential Equations
随机和确定性色散偏微分方程中的非线性现象
- 批准号:
1815873 - 财政年份:2018
- 资助金额:
$ 9.73万 - 项目类别:
Continuing Grant
Nonlinear Partial Differential Equations, Concentration Phenomena, and Applications
非线性偏微分方程、浓度现象及应用
- 批准号:
1000228597-2012 - 财政年份:2018
- 资助金额:
$ 9.73万 - 项目类别:
Canada Research Chairs
Nonlinear Partial Differential Equations, Concentration Phenomena, and Applications
非线性偏微分方程、浓度现象及应用
- 批准号:
1000228597-2012 - 财政年份:2017
- 资助金额:
$ 9.73万 - 项目类别:
Canada Research Chairs