Rigidity Phenomena in Geometry and Dynamics
几何和动力学中的刚性现象
基本信息
- 批准号:1607260
- 负责人:
- 金额:$ 32.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Dynamical systems and ergodic theory investigate the evolution of a physical or mathematical system over time, such as turbulence in a fluid flow or changing planetary systems. New ideas and concepts such as information, entropy, chaos and fractals have changed our understanding of the world. Dynamics and ergodic theory provide excellent mathematical tools, and have a strong impact on the sciences and engineering. Symbolic dynamics for example has been instrumental in developing efficient and safe codes for computer science. Tools and ideas from smooth dynamics are used as far afield as cell biology and meteorology. Geometry is a highly developed and ancient field in mathematics of amazing vigor. It studies curves, surfaces and their higher dimensional analogues, their shapes, shortest paths, and maps between such spaces. Differential geometry had its roots in cartography, starting with Gauss in the nineteenth century. It is closely linked with physics and other sciences and applied areas such as computer vision. Geometry and dynamics are closely related. Indeed, important dynamical systems come from geometry, and vice versa geometry provides tools to study dynamical systems. One main goal of this project studies when two dynamical systems commute, i.e. when one system is unaffected by the changes brought on by the other. Alternatively, these are systems with unexpected symmetries Important examples of such systems arise from geometry when the space contains many flat subspaces. Group theory finally enters both dynamics and geometry by studying the group of symmetries of a geometry or dynamical situation, or by investigating the dynamical and geometric behavior of the group of symmetries acting on a space.This project centers on problems between dynamical systems, group theory and geometry. There are two main goals: First, establish exponential mixing properties for several different systems in dynamics, in particular frame flows from Riemannian geometry and solenoids coming from noninvertible systems. The principal investigator (PI) will draw tools from dynamics, geometry and number theory to accomplish these goals. Second, prove rigidity properties in geometry and in dynamical systems, in particular when the system and spaces in question are "higher rank", e.g. when spaces have flat subspaces or the dynamics has nontrivially commuting elements. Such systems appear naturally in seemingly quite separate areas, for example in number theory or in studying the spectrum of the Laplacian. The investigator will work on rigidity properties of actions of higher rank abelian and semi-simple Lie groups and their lattices striving to classify such systems under suitable geometric or dynamical hypotheses. The PI will employ tools from geometry, dynamics, Lie groups, and specifically exponential mixing properties. The PI will also investigate discrete faithful representations of hyperbolic groups in p-adic Lie groups, equilibrium states for partially hyperbolic dynamical systems and spherical higher rank in Riemannian geometry.
动力系统和遍历理论研究物理或数学系统随时间的演化,例如流体流动中的湍流或变化的行星系统。信息、熵、混沌和分形等新的思想和概念改变了我们对世界的理解。动力学和遍历理论提供了优秀的数学工具,并对科学和工程产生了强烈的影响。例如,符号动力学在为计算机科学开发高效和安全的代码方面发挥了重要作用。光滑动力学的工具和思想被广泛应用于细胞生物学和气象学。几何学是数学中一个高度发展的古老领域,具有惊人的活力。 它研究曲线,曲面及其高维类似物,它们的形状,最短路径以及这些空间之间的映射。 微分几何起源于制图学,始于世纪的高斯。它与物理学和其他科学以及计算机视觉等应用领域密切相关。几何学和动力学密切相关。事实上,重要的动力系统来自几何,反之亦然,几何提供了研究动力系统的工具。该项目的一个主要目标是研究两个动力系统何时交换,即当一个系统不受另一个系统所带来的变化的影响时。或者,这些系统具有意想不到的对称性,当空间包含许多平坦子空间时,这种系统的重要例子来自几何学。 群论通过研究几何或动力学情形的对称群,或通过研究作用于空间的对称群的动力学和几何行为,最终进入动力学和几何学。这个项目集中在动力系统,群论和几何之间的问题。有两个主要目标:首先,建立指数混合性质的几个不同的系统的动力学,特别是框架流从黎曼几何和不可逆系统的。主要研究者(PI)将从动力学,几何学和数论中提取工具来实现这些目标。其次,证明几何和动力系统中的刚性性质,特别是当系统和空间的问题是“高秩”,例如,当空间有平坦的子空间或动力学有非平凡的交换元素。这样的系统自然地出现在看似完全独立的领域,例如数论或拉普拉斯算子的频谱研究。研究人员将研究高阶阿贝尔和半单李群及其晶格的刚性性质,努力在合适的几何或动力学假设下对此类系统进行分类。 PI将采用几何学,动力学,李群,特别是指数混合性质的工具。 PI还将研究双曲群在p-adic李群中的离散忠实表示,部分双曲动力系统的平衡态和黎曼几何中的球形高阶。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Exponential mixing and smooth classification of commuting expanding maps
通勤扩展图的指数混合与平滑分类
- DOI:10.3934/jmd.2017012
- 发表时间:2017
- 期刊:
- 影响因子:1.1
- 作者:Spatzier, Ralf;Yang, Lei
- 通讯作者:Yang, Lei
On the work of Rodriguez Hertz on rigidity in dynamics
罗德里格斯·赫兹 (Rodriguez Hertz) 关于动力学刚性的工作
- DOI:10.3934/jmd.2016.10.191
- 发表时间:2016
- 期刊:
- 影响因子:1.1
- 作者:Spatzier, Ralf
- 通讯作者:Spatzier, Ralf
Hyperbolic rank rigidity for manifolds of -pinched negative curvature
负收缩曲率流形的双曲秩刚度
- DOI:10.1017/etds.2018.113
- 发表时间:2020
- 期刊:
- 影响因子:0.9
- 作者:CONNELL, CHRIS;NGUYEN, THANG;SPATZIER, RALF
- 通讯作者:SPATZIER, RALF
Character varieties and actions on products of trees
性状品种及其对树木产物的作用
- DOI:10.1007/s11856-018-1683-3
- 发表时间:2018
- 期刊:
- 影响因子:1
- 作者:Fisher, David;Larsen, Michael;Spatzier, Ralf;Stover, Matthew
- 通讯作者:Stover, Matthew
Almost isotropic Kähler manifolds
几乎各向同性的凯勒流形
- DOI:10.1515/crelle-2019-0030
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Schmidt, Benjamin;Shankar, Krishnan;Spatzier, Ralf
- 通讯作者:Spatzier, Ralf
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ralf Spatzier其他文献
Ralf Spatzier的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ralf Spatzier', 18)}}的其他基金
Rigidity Properties in Dynamics and Geometry
动力学和几何中的刚性特性
- 批准号:
2003712 - 财政年份:2020
- 资助金额:
$ 32.2万 - 项目类别:
Standard Grant
Rigidity Phenomena in Geometry and Dynamics
几何和动力学中的刚性现象
- 批准号:
1307164 - 财政年份:2013
- 资助金额:
$ 32.2万 - 项目类别:
Continuing Grant
EMSW21-RTG: Training the Research Workforce in Geometry, Topology and Dynamics
EMSW21-RTG:几何、拓扑和动力学方面的研究人员培训
- 批准号:
1045119 - 财政年份:2011
- 资助金额:
$ 32.2万 - 项目类别:
Continuing Grant
Collaborative Research: Research, Disseminations, and Faculty Development of Inquiry-Based Learning (IBL) Methods in the Teaching and Learning of Mathematics
合作研究:数学教学中探究式学习(IBL)方法的研究、传播和教师发展
- 批准号:
0920057 - 财政年份:2009
- 资助金额:
$ 32.2万 - 项目类别:
Standard Grant
Rigidity Phenomena in Geometry and Dynamics
几何和动力学中的刚性现象
- 批准号:
0906085 - 财政年份:2009
- 资助金额:
$ 32.2万 - 项目类别:
Standard Grant
EMSW21-RTG: Training the Research Workforce in Geometry, Topology and Dynamics
EMSW21-RTG:几何、拓扑和动力学方面的研究人员培训
- 批准号:
0602191 - 财政年份:2006
- 资助金额:
$ 32.2万 - 项目类别:
Continuing Grant
Rigidity Phenomena in Geometry and Dynamics
几何和动力学中的刚性现象
- 批准号:
0604857 - 财政年份:2006
- 资助金额:
$ 32.2万 - 项目类别:
Standard Grant
Inquiry-Based Learning in Mathematics at the University of Michigan
密歇根大学数学探究式学习
- 批准号:
0536464 - 财政年份:2006
- 资助金额:
$ 32.2万 - 项目类别:
Standard Grant
Rigidity Phenomena in Geometry and Dynamics
几何和动力学中的刚性现象
- 批准号:
0203735 - 财政年份:2002
- 资助金额:
$ 32.2万 - 项目类别:
Continuing Grant
Rigidity Phenomena in Differential Geometry and Dynamical Systems
微分几何和动力系统中的刚性现象
- 批准号:
9971556 - 财政年份:1999
- 资助金额:
$ 32.2万 - 项目类别:
Continuing Grant
相似海外基金
Unusual Concentration Phenomena in Probability, Analysis, and Geometry
概率、分析和几何中的异常集中现象
- 批准号:
2054565 - 财政年份:2021
- 资助金额:
$ 32.2万 - 项目类别:
Standard Grant
Noncrossing phenomena in Algebra and Geometry
代数和几何中的非交叉现象
- 批准号:
451688463 - 财政年份:2020
- 资助金额:
$ 32.2万 - 项目类别:
Heisenberg Grants
Vortex dynamics on surfaces exploring new fluid phenomena brought by geometry
表面涡动力学探索几何带来的新流体现象
- 批准号:
18H01136 - 财政年份:2018
- 资助金额:
$ 32.2万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Noncrossing phenomena in Algebra and Geometry
代数和几何中的非交叉现象
- 批准号:
375076785 - 财政年份:2017
- 资助金额:
$ 32.2万 - 项目类别:
Heisenberg Fellowships
Interplay of Topology and Geometry in Polymeric Critical Phenomena
聚合物临界现象中拓扑和几何的相互作用
- 批准号:
DP160103562 - 财政年份:2016
- 资助金额:
$ 32.2万 - 项目类别:
Discovery Projects
Variational and Parabolic Phenomena in Differential Geometry
微分几何中的变分和抛物线现象
- 批准号:
1737006 - 财政年份:2016
- 资助金额:
$ 32.2万 - 项目类别:
Standard Grant
Variational and Parabolic Phenomena in Differential Geometry
微分几何中的变分和抛物线现象
- 批准号:
1512574 - 财政年份:2015
- 资助金额:
$ 32.2万 - 项目类别:
Standard Grant
Geometry, topology, and dynamics in quantum Hall effects and related phenomena
量子霍尔效应及相关现象中的几何、拓扑和动力学
- 批准号:
1508255 - 财政年份:2015
- 资助金额:
$ 32.2万 - 项目类别:
Continuing Grant
Stability Phenomena in Number Theory, Algebraic Geometry, and Topology
数论、代数几何和拓扑中的稳定性现象
- 批准号:
1402620 - 财政年份:2014
- 资助金额:
$ 32.2万 - 项目类别:
Continuing Grant
Rigidity Phenomena in Geometry and Dynamics
几何和动力学中的刚性现象
- 批准号:
1307164 - 财政年份:2013
- 资助金额:
$ 32.2万 - 项目类别:
Continuing Grant














{{item.name}}会员




