Rigidity Phenomena in Geometry and Dynamics

几何和动力学中的刚性现象

基本信息

项目摘要

The research proposed lies between dynamical systems, group theory and geometry. Principally, the investigator plans to study dynamical and geometric structures of "higher rank" systems in these areas. These appear naturally in seemingly quite separate areas, for example in number theory or in studying the spectrum of the Laplacian. The investigator will work on rigidity properties of actions of higher rank abelian and semi-simple Lie groups and their lattices striving to classify such systems under suitable geometric or dynamical hypotheses. In particular, he will study higher rank hyperbolic abelian actions and their cocycles on tori and homogeneous spaces as well as general Cartan actions of rank 2. These special cases provide tests for more general conjectures. The investigator will also study actions by semi-simple groups and their lattices preserving projective, affine and other geometric structures. In addition, the investigator will analyze Riemannian manifolds (especially those of higher spherical rank) and more general singular spaces and their geodesic flows. Geometric, dynamical and group theoretic tools will be used in this research.Dynamical systems and ergodic theory investigate the evolution of a physical or mathematical system over time, such as turbulence in a fluid flow. New ideas and concepts such as chaos and fractals have changed our understanding of the world. Dynamics and ergodic theory provide excellent mathematical tools, and have a strong impact on the sciences and engineering. Symbolic dynamics for instance has been instrumental in developing efficient and safe codes for computer science. Tools and ideas from smooth dynamics are used as far afield as cell biology and meteorology. Geometry is a highly developed and ancient field in mathematics of amazing vigor. It studies curves, surfaces and their higher dimensional analogues, their shapes, shortest paths, and maps between such spaces. Differential geometry had its roots in cartography, starting with Gauss in the nineteenth century. It is closely linked with physics and other sciences and applied areas such as computer vision. Geometry and dynamics are closely related. Indeed, important dynamical systems come from geometry, and vice versa geometry provides tools to study dynamical systems. One main goal of this project studies when two dynamical systems commute, i.e. when one system is unaffected by the changes brought on by the other. Important examples of such systems arise from geometry when the space contains many flat subspaces. Group theory finally enters both dynamics and geometry by studying the group of symmetries of a geometry or dynamical situation, or by investigating the dynamical and geometric behavior of the group of symmetries acting on a space.
提出的研究介于动力系统、群论和几何之间。主要,研究者计划在这些地区研究“高阶”系统的动力学和几何结构。它们自然地出现在看似完全不同的领域,例如在数论或研究拉普拉斯谱。研究者将研究高阶阿贝尔和半简单李群及其格的作用的刚性性质,努力在适当的几何或动力学假设下对这些系统进行分类。特别是,他将研究环面和齐次空间上的高阶双曲阿贝尔作用及其环,以及一般的2阶Cartan作用。这些特殊情况为更一般的猜想提供了检验。研究者还将研究半单群及其格保持射影、仿射和其他几何结构的行为。此外,研究者将分析黎曼流形(特别是高球阶流形)和更一般的奇异空间及其测地线流。本研究将使用几何、动力学和群论工具。动力系统和遍历理论研究物理或数学系统随时间的演变,例如流体流动中的湍流。新的思想和概念,如混沌和分形已经改变了我们对世界的理解。动力学和遍历理论提供了优秀的数学工具,并对科学和工程产生了强烈的影响。例如,符号动力学在为计算机科学开发高效和安全的代码方面发挥了重要作用。光滑动力学的工具和思想被广泛应用于细胞生物学和气象学。几何是数学中一个高度发展的古老领域,具有惊人的活力。它研究曲线、曲面及其高维类似物、它们的形状、最短路径以及这些空间之间的映射。微分几何起源于19世纪由高斯提出的制图学。它与物理学和其他科学以及计算机视觉等应用领域密切相关。几何学和动力学是密切相关的。事实上,重要的动力系统来自几何学,反之亦然,几何学提供了研究动力系统的工具。这个项目的一个主要目标是研究当两个动态系统交换时,即当一个系统不受另一个系统带来的变化的影响。这种系统的重要例子出现在几何中,当空间包含许多平坦子空间时。群论最终通过研究几何或动力情况下的对称群,或通过研究作用于空间的对称群的动力和几何行为而进入动力学和几何。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Exponential mixing and smooth classification of commuting expanding maps
通勤扩展图的指数混合与平滑分类
  • DOI:
    10.3934/jmd.2017012
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Spatzier, Ralf;Yang, Lei
  • 通讯作者:
    Yang, Lei
On the work of Rodriguez Hertz on rigidity in dynamics
罗德里格斯·赫兹 (Rodriguez Hertz) 关于动力学刚性的工作
  • DOI:
    10.3934/jmd.2016.10.191
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Spatzier, Ralf
  • 通讯作者:
    Spatzier, Ralf
Equilibrium measures for certain isometric extensions of Anosov systems
Anosov 系统某些等距延伸的平衡测度
Character varieties and actions on products of trees
性状品种及其对树木产物的作用
  • DOI:
    10.1007/s11856-018-1683-3
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Fisher, David;Larsen, Michael;Spatzier, Ralf;Stover, Matthew
  • 通讯作者:
    Stover, Matthew
Positively curved manifolds with large spherical rank
具有大球阶的正弯曲流形
  • DOI:
    10.4171/cmh/384
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Schmidt, Benjamin;Shankar, Krishnan;Spatzier, Ralf
  • 通讯作者:
    Spatzier, Ralf
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ralf Spatzier其他文献

Ralf Spatzier的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ralf Spatzier', 18)}}的其他基金

Rigidity Properties in Dynamics and Geometry
动力学和几何中的刚性特性
  • 批准号:
    2003712
  • 财政年份:
    2020
  • 资助金额:
    $ 29.52万
  • 项目类别:
    Standard Grant
Rigidity Phenomena in Geometry and Dynamics
几何和动力学中的刚性现象
  • 批准号:
    1607260
  • 财政年份:
    2016
  • 资助金额:
    $ 29.52万
  • 项目类别:
    Standard Grant
EMSW21-RTG: Training the Research Workforce in Geometry, Topology and Dynamics
EMSW21-RTG:几何、拓扑和动力学方面的研究人员培训
  • 批准号:
    1045119
  • 财政年份:
    2011
  • 资助金额:
    $ 29.52万
  • 项目类别:
    Continuing Grant
Collaborative Research: Research, Disseminations, and Faculty Development of Inquiry-Based Learning (IBL) Methods in the Teaching and Learning of Mathematics
合作研究:数学教学中探究式学习(IBL)方法的研究、传播和教师发展
  • 批准号:
    0920057
  • 财政年份:
    2009
  • 资助金额:
    $ 29.52万
  • 项目类别:
    Standard Grant
Rigidity Phenomena in Geometry and Dynamics
几何和动力学中的刚性现象
  • 批准号:
    0906085
  • 财政年份:
    2009
  • 资助金额:
    $ 29.52万
  • 项目类别:
    Standard Grant
EMSW21-RTG: Training the Research Workforce in Geometry, Topology and Dynamics
EMSW21-RTG:几何、拓扑和动力学方面的研究人员培训
  • 批准号:
    0602191
  • 财政年份:
    2006
  • 资助金额:
    $ 29.52万
  • 项目类别:
    Continuing Grant
Rigidity Phenomena in Geometry and Dynamics
几何和动力学中的刚性现象
  • 批准号:
    0604857
  • 财政年份:
    2006
  • 资助金额:
    $ 29.52万
  • 项目类别:
    Standard Grant
Inquiry-Based Learning in Mathematics at the University of Michigan
密歇根大学数学探究式学习
  • 批准号:
    0536464
  • 财政年份:
    2006
  • 资助金额:
    $ 29.52万
  • 项目类别:
    Standard Grant
Rigidity Phenomena in Geometry and Dynamics
几何和动力学中的刚性现象
  • 批准号:
    0203735
  • 财政年份:
    2002
  • 资助金额:
    $ 29.52万
  • 项目类别:
    Continuing Grant
Rigidity Phenomena in Differential Geometry and Dynamical Systems
微分几何和动力系统中的刚性现象
  • 批准号:
    9971556
  • 财政年份:
    1999
  • 资助金额:
    $ 29.52万
  • 项目类别:
    Continuing Grant

相似海外基金

Unusual Concentration Phenomena in Probability, Analysis, and Geometry
概率、分析和几何中的异常集中现象
  • 批准号:
    2054565
  • 财政年份:
    2021
  • 资助金额:
    $ 29.52万
  • 项目类别:
    Standard Grant
Noncrossing phenomena in Algebra and Geometry
代数和几何中的非交叉现象
  • 批准号:
    451688463
  • 财政年份:
    2020
  • 资助金额:
    $ 29.52万
  • 项目类别:
    Heisenberg Grants
Vortex dynamics on surfaces exploring new fluid phenomena brought by geometry
表面涡动力学探索几何带来的新流体现象
  • 批准号:
    18H01136
  • 财政年份:
    2018
  • 资助金额:
    $ 29.52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Noncrossing phenomena in Algebra and Geometry
代数和几何中的非交叉现象
  • 批准号:
    375076785
  • 财政年份:
    2017
  • 资助金额:
    $ 29.52万
  • 项目类别:
    Heisenberg Fellowships
Interplay of Topology and Geometry in Polymeric Critical Phenomena
聚合物临界现象中拓扑和几何的相互作用
  • 批准号:
    DP160103562
  • 财政年份:
    2016
  • 资助金额:
    $ 29.52万
  • 项目类别:
    Discovery Projects
Rigidity Phenomena in Geometry and Dynamics
几何和动力学中的刚性现象
  • 批准号:
    1607260
  • 财政年份:
    2016
  • 资助金额:
    $ 29.52万
  • 项目类别:
    Standard Grant
Variational and Parabolic Phenomena in Differential Geometry
微分几何中的变分和抛物线现象
  • 批准号:
    1737006
  • 财政年份:
    2016
  • 资助金额:
    $ 29.52万
  • 项目类别:
    Standard Grant
Variational and Parabolic Phenomena in Differential Geometry
微分几何中的变分和抛物线现象
  • 批准号:
    1512574
  • 财政年份:
    2015
  • 资助金额:
    $ 29.52万
  • 项目类别:
    Standard Grant
Geometry, topology, and dynamics in quantum Hall effects and related phenomena
量子霍尔效应及相关现象中的几何、拓扑和动力学
  • 批准号:
    1508255
  • 财政年份:
    2015
  • 资助金额:
    $ 29.52万
  • 项目类别:
    Continuing Grant
Stability Phenomena in Number Theory, Algebraic Geometry, and Topology
数论、代数几何和拓扑中的稳定性现象
  • 批准号:
    1402620
  • 财政年份:
    2014
  • 资助金额:
    $ 29.52万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了