Rigidity Phenomena in Geometry and Dynamics

几何和动力学中的刚性现象

基本信息

项目摘要

AbstractAward: DMS-0604857Principal Investigator: Ralf SpatzierThe research proposed lies at the interface of dynamical systemsand differential geometry. Its principal goal is theinvestigation of the dynamical and geometric structures of"higher rank" systems. Such systems appear naturally indynamical systems, geometry and even other seemingly quitediffernt areas such as number theory. The investigator willstudy rigidity properties of actions of higher rank abelian andsemisimple Lie groups and their lattices with the ultimate goalof classifying such systems under suitable geometric or dynamicalhypotheses. In particular, he will study higher rank hyperbolicabelian actions, and actions by semisimple groups and theirlattices preserving affine and geometric structures. Theinvestigator will also investigate rigidity properties of actionsof discrete groups in rank one semisimple Lie groups. Inaddition, he will analyze Riemannian manifolds (especially higherrank ones) and their geodesic flows. Geometric, dynamical andgroup theoretic tools will be used in this research.Dynamical systems and ergodic theory are relatively young fieldsthat investigate the evolution of a physical or mathematicalsystem over time (e.g. turbulence in a fluid flow). New ideasand concepts from dynamics such as chaos and fractals havechanged our perception of the world fundamentally. Dynamics andergodic theory provide the mathematical tools and analysis forthese investigations. Dynamical systems have had a major impacton the sciences and engineering. Symbolic dynamics for instancehas been instrumental in developing efficient and safe codes forcomputer science. Tools and ideas from smooth dynamics are usedas far afield as cell biology and meteorology. Geometry is oneof the oldest fields in mathematics, and generally studiescurves, surfaces and their higher dimensional analogues, theirshapes, shortest paths, and maps between such spaces.Differential geometry had its roots in cartography, and is nowstudied for its close ties with physics and other sciences andapplied areas (computer vision e.g.) as well as internalaesthetic reasons. Geometry and dynamics are closely related assome important dynamical systems originate from geometry, andgeometry also provides tools to study dynamical systems. Onemain goal of this project studies when two dynamical systemscommute, i.e. when one system is unaffected by the changesbrought on by the other. Important examples of such systemsarise from geometry.
AbstractAward:DMS-0604857首席研究员:Ralf Spatzier提出的研究位于动力系统和微分几何的界面。 它的主要目标是研究“高阶”系统的动力学和几何结构。 这样的系统自然地出现在动力系统、几何学甚至其他看似完全不同的领域,如数论中。 研究者将研究高阶阿贝尔和半单李群及其格作用的刚性性质,最终目标是在适当的几何或动力学假设下对此类系统进行分类。 特别是,他将研究高阶双曲阿贝尔行动,并采取行动的半简单群体和theirlattices保持仿射和几何结构。 研究者还将研究一阶半单李群中离散群作用的刚性性质。 此外,他将分析黎曼流形(特别是高阶流形)及其测地线流。 本研究将使用几何、动力学和群论工具。动力系统和各态历经理论是相对年轻的领域,它们研究物理或数学系统随时间的演变(例如流体流动中的湍流)。 混沌和分形等动力学的新思想和概念从根本上改变了我们对世界的看法。 动力学和遍历理论为这些研究提供了数学工具和分析。 动力系统对科学和工程学有重大影响。 例如,符号动力学在开发计算机科学的高效和安全代码方面起到了重要作用。 平滑动力学的工具和思想被广泛应用于细胞生物学和气象学。 几何学是数学中最古老的领域之一,通常研究曲线、曲面及其高维类似物、它们的形状、最短路径以及这些空间之间的映射。微分几何起源于制图学,现在因其与物理学和其他科学以及应用领域(例如计算机视觉)的密切联系而受到研究。以及内在的审美原因。 几何与动力学有着密切的联系,一些重要的动力系统起源于几何,几何也为研究动力系统提供了工具. 这个项目的一个主要目标是研究当两个动力系统交换时,即当一个系统不受另一个系统所带来的变化的影响时。 这种系统的重要例子来自几何学。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ralf Spatzier其他文献

Ralf Spatzier的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ralf Spatzier', 18)}}的其他基金

Rigidity Properties in Dynamics and Geometry
动力学和几何中的刚性特性
  • 批准号:
    2003712
  • 财政年份:
    2020
  • 资助金额:
    $ 23.88万
  • 项目类别:
    Standard Grant
Rigidity Phenomena in Geometry and Dynamics
几何和动力学中的刚性现象
  • 批准号:
    1607260
  • 财政年份:
    2016
  • 资助金额:
    $ 23.88万
  • 项目类别:
    Standard Grant
Rigidity Phenomena in Geometry and Dynamics
几何和动力学中的刚性现象
  • 批准号:
    1307164
  • 财政年份:
    2013
  • 资助金额:
    $ 23.88万
  • 项目类别:
    Continuing Grant
EMSW21-RTG: Training the Research Workforce in Geometry, Topology and Dynamics
EMSW21-RTG:几何、拓扑和动力学方面的研究人员培训
  • 批准号:
    1045119
  • 财政年份:
    2011
  • 资助金额:
    $ 23.88万
  • 项目类别:
    Continuing Grant
Collaborative Research: Research, Disseminations, and Faculty Development of Inquiry-Based Learning (IBL) Methods in the Teaching and Learning of Mathematics
合作研究:数学教学中探究式学习(IBL)方法的研究、传播和教师发展
  • 批准号:
    0920057
  • 财政年份:
    2009
  • 资助金额:
    $ 23.88万
  • 项目类别:
    Standard Grant
Rigidity Phenomena in Geometry and Dynamics
几何和动力学中的刚性现象
  • 批准号:
    0906085
  • 财政年份:
    2009
  • 资助金额:
    $ 23.88万
  • 项目类别:
    Standard Grant
EMSW21-RTG: Training the Research Workforce in Geometry, Topology and Dynamics
EMSW21-RTG:几何、拓扑和动力学方面的研究人员培训
  • 批准号:
    0602191
  • 财政年份:
    2006
  • 资助金额:
    $ 23.88万
  • 项目类别:
    Continuing Grant
Inquiry-Based Learning in Mathematics at the University of Michigan
密歇根大学数学探究式学习
  • 批准号:
    0536464
  • 财政年份:
    2006
  • 资助金额:
    $ 23.88万
  • 项目类别:
    Standard Grant
Rigidity Phenomena in Geometry and Dynamics
几何和动力学中的刚性现象
  • 批准号:
    0203735
  • 财政年份:
    2002
  • 资助金额:
    $ 23.88万
  • 项目类别:
    Continuing Grant
Rigidity Phenomena in Differential Geometry and Dynamical Systems
微分几何和动力系统中的刚性现象
  • 批准号:
    9971556
  • 财政年份:
    1999
  • 资助金额:
    $ 23.88万
  • 项目类别:
    Continuing Grant

相似海外基金

Unusual Concentration Phenomena in Probability, Analysis, and Geometry
概率、分析和几何中的异常集中现象
  • 批准号:
    2054565
  • 财政年份:
    2021
  • 资助金额:
    $ 23.88万
  • 项目类别:
    Standard Grant
Noncrossing phenomena in Algebra and Geometry
代数和几何中的非交叉现象
  • 批准号:
    451688463
  • 财政年份:
    2020
  • 资助金额:
    $ 23.88万
  • 项目类别:
    Heisenberg Grants
Vortex dynamics on surfaces exploring new fluid phenomena brought by geometry
表面涡动力学探索几何带来的新流体现象
  • 批准号:
    18H01136
  • 财政年份:
    2018
  • 资助金额:
    $ 23.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Noncrossing phenomena in Algebra and Geometry
代数和几何中的非交叉现象
  • 批准号:
    375076785
  • 财政年份:
    2017
  • 资助金额:
    $ 23.88万
  • 项目类别:
    Heisenberg Fellowships
Interplay of Topology and Geometry in Polymeric Critical Phenomena
聚合物临界现象中拓扑和几何的相互作用
  • 批准号:
    DP160103562
  • 财政年份:
    2016
  • 资助金额:
    $ 23.88万
  • 项目类别:
    Discovery Projects
Rigidity Phenomena in Geometry and Dynamics
几何和动力学中的刚性现象
  • 批准号:
    1607260
  • 财政年份:
    2016
  • 资助金额:
    $ 23.88万
  • 项目类别:
    Standard Grant
Variational and Parabolic Phenomena in Differential Geometry
微分几何中的变分和抛物线现象
  • 批准号:
    1737006
  • 财政年份:
    2016
  • 资助金额:
    $ 23.88万
  • 项目类别:
    Standard Grant
Variational and Parabolic Phenomena in Differential Geometry
微分几何中的变分和抛物线现象
  • 批准号:
    1512574
  • 财政年份:
    2015
  • 资助金额:
    $ 23.88万
  • 项目类别:
    Standard Grant
Geometry, topology, and dynamics in quantum Hall effects and related phenomena
量子霍尔效应及相关现象中的几何、拓扑和动力学
  • 批准号:
    1508255
  • 财政年份:
    2015
  • 资助金额:
    $ 23.88万
  • 项目类别:
    Continuing Grant
Stability Phenomena in Number Theory, Algebraic Geometry, and Topology
数论、代数几何和拓扑中的稳定性现象
  • 批准号:
    1402620
  • 财政年份:
    2014
  • 资助金额:
    $ 23.88万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了