Rigidity Phenomena in Geometry and Dynamics

几何和动力学中的刚性现象

基本信息

项目摘要

ABSTRACT DMS - 0203735.The research proposed lies at the interface of dynamical systems and differential geometry. Its principal goal is the investigation of the dynamical and geometric structures of "higher rank" systems. Such systems naturally appear both in dynamical systems and geometry. In particular, the principal investigator will study rigidity properties of actions of higher rank abelian and semisimple Lie groups and their lattices with the ultimate goal of classifying such systems under suitable geometric or dynamical hypotheses. In particular, he will study higherrank hyperbolic abelian actions, and actions by semisimple groups and their lattices preserving affine and geometric structures. He will also investigate invariant measures of algebraic higher rank abelian actions. The investigator will also investigate Riemannian manifolds (especially higher rank ones)and their geodesic flows. Geometric, dynamical and group theoretic tools will be used in this research.Dynamical systems and ergodic theory are relatively new fields that investigate the evolution of a physical or mathematical system over time (e.g. turbulence in a fluid flow). New ideas and concepts from dynamics (e.g. chaos, fractals) have changed our perception of the world fundamentally. Dynamics and ergodic theory provide the mathematical tools and analysis for these investigations. Dynamical systems have had a major impact on the sciences and engineering. Symbolic dynamics for instance has been instrumental in developing efficient and safe codes for computer science. Tools and ideas from smooth dynamics are used as far afield as cell biology and meteorology. Geometry is one of the oldest fields in mathematics, and generally studies curves, surfaces and their higher dimensional analogues, their shapes, shortest paths, and maps between such spaces. Differential geometry had its roots in cartography, and is now studied for its close ties with physics and other sciences and applied areas (computer vision e.g.)as well as internal aesthetic reasons. Geometry and dynamics are closely related as some important dynamical systems originate from geometry, and geometry also provides tools to study dynamical systems. One main goal of this project studies when two dynamical systems commute, i.e. when one system is unaffected by the changes brought on by the other. Important examples of such systems arise from geometry.
摘要DMS -0203735.所提出的研究处于动力系统和微分几何的交界处。 它的主要目标是调查的动力学和几何结构的“高秩”系统。 这样的系统自然地出现在动力系统和几何学中。 特别是,首席研究员将研究高秩阿贝尔和半单李群及其格的作用的刚性性质,最终目标是在合适的几何或动力学假设下对此类系统进行分类。 特别是,他将研究higherrank双曲阿贝尔行动,并采取行动的semisimple群体和他们的格子保持仿射和几何结构。他还将调查不变的措施代数高阶阿贝尔行动。 调查员也将调查黎曼流形(特别是高阶流形)和它们的测地线流。 本研究将使用几何、动力学和群论工具。动力系统和遍历理论是研究物理或数学系统随时间演变的相对较新的领域(例如流体流动中的湍流)。 动力学中的新思想和概念(例如混乱、分形)从根本上改变了我们对世界的看法。 动力学和遍历理论为这些研究提供了数学工具和分析。动力系统对科学和工程产生了重大影响。 例如,符号动力学在为计算机科学开发高效和安全的代码方面发挥了重要作用。 光滑动力学的工具和思想被广泛应用于细胞生物学和气象学。几何学是数学中最古老的领域之一,通常研究曲线,曲面及其高维类似物,它们的形状,最短路径以及这些空间之间的映射。 微分几何起源于制图学,现在因其与物理学和其他科学和应用领域(例如计算机视觉)的密切联系而被研究。以及内在的美学原因。 几何与动力学有着密切的联系,一些重要的动力系统都起源于几何,而几何也为研究动力系统提供了工具。 该项目的一个主要目标是研究两个动力系统何时发生交换,即一个系统何时不受另一个系统所带来的变化的影响。这种系统的重要例子来自几何学。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ralf Spatzier其他文献

Ralf Spatzier的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ralf Spatzier', 18)}}的其他基金

Rigidity Properties in Dynamics and Geometry
动力学和几何中的刚性特性
  • 批准号:
    2003712
  • 财政年份:
    2020
  • 资助金额:
    $ 22.2万
  • 项目类别:
    Standard Grant
Rigidity Phenomena in Geometry and Dynamics
几何和动力学中的刚性现象
  • 批准号:
    1607260
  • 财政年份:
    2016
  • 资助金额:
    $ 22.2万
  • 项目类别:
    Standard Grant
Rigidity Phenomena in Geometry and Dynamics
几何和动力学中的刚性现象
  • 批准号:
    1307164
  • 财政年份:
    2013
  • 资助金额:
    $ 22.2万
  • 项目类别:
    Continuing Grant
EMSW21-RTG: Training the Research Workforce in Geometry, Topology and Dynamics
EMSW21-RTG:几何、拓扑和动力学方面的研究人员培训
  • 批准号:
    1045119
  • 财政年份:
    2011
  • 资助金额:
    $ 22.2万
  • 项目类别:
    Continuing Grant
Collaborative Research: Research, Disseminations, and Faculty Development of Inquiry-Based Learning (IBL) Methods in the Teaching and Learning of Mathematics
合作研究:数学教学中探究式学习(IBL)方法的研究、传播和教师发展
  • 批准号:
    0920057
  • 财政年份:
    2009
  • 资助金额:
    $ 22.2万
  • 项目类别:
    Standard Grant
Rigidity Phenomena in Geometry and Dynamics
几何和动力学中的刚性现象
  • 批准号:
    0906085
  • 财政年份:
    2009
  • 资助金额:
    $ 22.2万
  • 项目类别:
    Standard Grant
EMSW21-RTG: Training the Research Workforce in Geometry, Topology and Dynamics
EMSW21-RTG:几何、拓扑和动力学方面的研究人员培训
  • 批准号:
    0602191
  • 财政年份:
    2006
  • 资助金额:
    $ 22.2万
  • 项目类别:
    Continuing Grant
Rigidity Phenomena in Geometry and Dynamics
几何和动力学中的刚性现象
  • 批准号:
    0604857
  • 财政年份:
    2006
  • 资助金额:
    $ 22.2万
  • 项目类别:
    Standard Grant
Inquiry-Based Learning in Mathematics at the University of Michigan
密歇根大学数学探究式学习
  • 批准号:
    0536464
  • 财政年份:
    2006
  • 资助金额:
    $ 22.2万
  • 项目类别:
    Standard Grant
Rigidity Phenomena in Differential Geometry and Dynamical Systems
微分几何和动力系统中的刚性现象
  • 批准号:
    9971556
  • 财政年份:
    1999
  • 资助金额:
    $ 22.2万
  • 项目类别:
    Continuing Grant

相似海外基金

Unusual Concentration Phenomena in Probability, Analysis, and Geometry
概率、分析和几何中的异常集中现象
  • 批准号:
    2054565
  • 财政年份:
    2021
  • 资助金额:
    $ 22.2万
  • 项目类别:
    Standard Grant
Noncrossing phenomena in Algebra and Geometry
代数和几何中的非交叉现象
  • 批准号:
    451688463
  • 财政年份:
    2020
  • 资助金额:
    $ 22.2万
  • 项目类别:
    Heisenberg Grants
Vortex dynamics on surfaces exploring new fluid phenomena brought by geometry
表面涡动力学探索几何带来的新流体现象
  • 批准号:
    18H01136
  • 财政年份:
    2018
  • 资助金额:
    $ 22.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Noncrossing phenomena in Algebra and Geometry
代数和几何中的非交叉现象
  • 批准号:
    375076785
  • 财政年份:
    2017
  • 资助金额:
    $ 22.2万
  • 项目类别:
    Heisenberg Fellowships
Interplay of Topology and Geometry in Polymeric Critical Phenomena
聚合物临界现象中拓扑和几何的相互作用
  • 批准号:
    DP160103562
  • 财政年份:
    2016
  • 资助金额:
    $ 22.2万
  • 项目类别:
    Discovery Projects
Rigidity Phenomena in Geometry and Dynamics
几何和动力学中的刚性现象
  • 批准号:
    1607260
  • 财政年份:
    2016
  • 资助金额:
    $ 22.2万
  • 项目类别:
    Standard Grant
Variational and Parabolic Phenomena in Differential Geometry
微分几何中的变分和抛物线现象
  • 批准号:
    1737006
  • 财政年份:
    2016
  • 资助金额:
    $ 22.2万
  • 项目类别:
    Standard Grant
Variational and Parabolic Phenomena in Differential Geometry
微分几何中的变分和抛物线现象
  • 批准号:
    1512574
  • 财政年份:
    2015
  • 资助金额:
    $ 22.2万
  • 项目类别:
    Standard Grant
Geometry, topology, and dynamics in quantum Hall effects and related phenomena
量子霍尔效应及相关现象中的几何、拓扑和动力学
  • 批准号:
    1508255
  • 财政年份:
    2015
  • 资助金额:
    $ 22.2万
  • 项目类别:
    Continuing Grant
Stability Phenomena in Number Theory, Algebraic Geometry, and Topology
数论、代数几何和拓扑中的稳定性现象
  • 批准号:
    1402620
  • 财政年份:
    2014
  • 资助金额:
    $ 22.2万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了