Efficient Triangulations and Normal Surface Theory
高效的三角测量和法线表面理论
基本信息
- 批准号:9971719
- 负责人:
- 金额:$ 11.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-07-15 至 2003-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal: DMS-9971719PI: William JacoAbstract. This project involves the development and use of efficienttriangulations and normal surface theory in the study and understanding of3-manifolds. A triangulation of a 3-manifold determines a class ofsurfaces in the 3-manifold called normal surfaces. A fundamental principalis that if a manifold contains an interesting surface, then for anytriangulation the manifold contains an interesting normal surface. Theguiding principle of efficient triangulations is reducing unnecessarynormal surfaces and improving the efficiency of computations fortriangulation based algorithms. They have exhibited remarkable success indoing this and, in addition, have revealed new combinatorial informationintimately related to the topology of 3-manifolds. These methods have ledto new, effective algorithms for recognizing the 3-sphere, determining ifa 3-manifold is a Haken manifold, and solving the unknotting problem.Low-dimensional manifolds provide the geometric models of most physicalphenomena. It is natural to study and understand all possible such models.Triangulations and normal surface theory provide an environment for such astudy. Research in these areas is making significant contribution tocomputational topology and complexity theory. It seems possible that thesetechniques will contribute to better computer visualization and possiblyto advances in medical modeling.
提案:DMS-9971719 PI:William J. Abstract。这个项目涉及到在三维流形的研究和理解中有效的三角剖分和法向曲面理论的发展和应用。三维流形的三角剖分确定了三维流形中的一类曲面,称为法向曲面。一个基本原理是,如果一个流形包含一个有趣的表面,那么对于任何三角形的流形包含一个有趣的正常表面。高效三角剖分的指导原则是减少不必要的法向曲面,提高三角剖分算法的计算效率。他们已经表现出显着的成功indoing这一点,此外,揭示了新的组合信息密切相关的拓扑结构的3流形。这些方法为三维球面的识别、三维流形是否为Haken流形的判定以及解纽结问题的求解提供了新的有效算法,低维流形为大多数物理现象提供了几何模型。研究和理解所有可能的这类模型是很自然的,三角剖分和法向曲面理论为这类研究提供了环境。这些领域的研究为计算拓扑学和复杂性理论做出了重要贡献。这些技术可能有助于更好的计算机可视化,并可能促进医学建模的发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Jaco其他文献
Finitely presented subgroups of three-manifold groups
- DOI:
10.1007/bf01406083 - 发表时间:
1971-12-01 - 期刊:
- 影响因子:3.600
- 作者:
William Jaco - 通讯作者:
William Jaco
Efficient triangulations and boundary slopes
- DOI:
10.1016/j.topol.2021.107689 - 发表时间:
2021-06-15 - 期刊:
- 影响因子:
- 作者:
Birch Bryant;William Jaco;J. Hyam Rubinstein - 通讯作者:
J. Hyam Rubinstein
$$\mathbb Z _2$$ -Thurston norm and complexity of 3-manifolds
- DOI:
10.1007/s00208-012-0824-y - 发表时间:
2012-06-21 - 期刊:
- 影响因子:1.400
- 作者:
William Jaco;J. Hyam Rubinstein;Stephan Tillmann - 通讯作者:
Stephan Tillmann
William Jaco的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William Jaco', 18)}}的其他基金
The Mathematical Inquiry Project: Faculty Instructional Change for Enhanced Student Learning and Success in Entry-Level Mathematics
数学探究项目:教师教学改革以增强学生的学习和入门级数学的成功
- 批准号:
1821545 - 财政年份:2018
- 资助金额:
$ 11.54万 - 项目类别:
Standard Grant
Strategic Direction for Mathematics Learning by Inquiry
探究式数学学习的策略方向
- 批准号:
1735643 - 财政年份:2017
- 资助金额:
$ 11.54万 - 项目类别:
Standard Grant
Embedded and Immersed Surfaces in Three-Dimensional Topology
三维拓扑中的嵌入式和浸入式表面
- 批准号:
1308767 - 财政年份:2013
- 资助金额:
$ 11.54万 - 项目类别:
Standard Grant
Efficient Triangulations, Decision Problems & Algorithms
高效的三角测量、决策问题
- 批准号:
0505609 - 财政年份:2005
- 资助金额:
$ 11.54万 - 项目类别:
Standard Grant
Efficient Triangulations of Three-Manifolds
三流形的高效三角剖分
- 批准号:
0204707 - 财政年份:2002
- 资助金额:
$ 11.54万 - 项目类别:
Continuing Grant
Essential Surfaces in Knot Exteriors: The Lopez Conjecture
结外部的基本表面:洛佩兹猜想
- 批准号:
9978071 - 财政年份:2000
- 资助金额:
$ 11.54万 - 项目类别:
Standard Grant
Mathematical Sciences: Efficient Triangulations and Normal Surface Theory
数学科学:高效三角测量和法向曲面理论
- 批准号:
9704833 - 财政年份:1997
- 资助金额:
$ 11.54万 - 项目类别:
Standard Grant
Mathematical Sciences: Research Conference on Analytic Number Theory and Diophantine Problems; Stillwater, Oklahoma; June 12-20, 1984
数学科学:解析数论与丢番图问题研究会议;
- 批准号:
8413414 - 财政年份:1984
- 资助金额:
$ 11.54万 - 项目类别:
Standard Grant
Mathematical Sciences: Geometric and Low-Dimensional Topology
数学科学:几何和低维拓扑
- 批准号:
8403571 - 财政年份:1984
- 资助金额:
$ 11.54万 - 项目类别:
Continuing Grant
相似海外基金
Quasiconformal analysis, optimal triangulations and fractal geometry
拟共形分析、最优三角剖分和分形几何
- 批准号:
2303987 - 财政年份:2023
- 资助金额:
$ 11.54万 - 项目类别:
Standard Grant
Triangulations: linking geometry and topology with combinatorics
三角测量:用组合学将几何和拓扑联系起来
- 批准号:
DP220102588 - 财政年份:2023
- 资助金额:
$ 11.54万 - 项目类别:
Discovery Projects
Veering Triangulations and Visualization
转向三角测量和可视化
- 批准号:
2203993 - 财政年份:2022
- 资助金额:
$ 11.54万 - 项目类别:
Standard Grant
MPS-Ascend: Triangulations of the Product of Two Simplices and Matroids from Fine Mixed Subdivisions
MPS-Ascend:精细混合细分的两个单纯形和拟阵乘积的三角剖分
- 批准号:
2213323 - 财政年份:2022
- 资助金额:
$ 11.54万 - 项目类别:
Fellowship Award
Affine cluster algebras as dynamical systems, surface triangulations, quiver representations and friezes
仿射簇代数作为动力系统、表面三角测量、箭袋表示和饰带
- 批准号:
21F20788 - 财政年份:2021
- 资助金额:
$ 11.54万 - 项目类别:
Grant-in-Aid for JSPS Fellows
A study on graph colorings of triangulations and quadrangulations using the method of partial duality
部分对偶法对三角剖分和四边形图形着色的研究
- 批准号:
21K13831 - 财政年份:2021
- 资助金额:
$ 11.54万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Algorithms and Data Structures for Robust 3D Geometry Processing via Intrinsic Triangulations
职业:通过内在三角测量进行鲁棒 3D 几何处理的算法和数据结构
- 批准号:
1943123 - 财政年份:2020
- 资助金额:
$ 11.54万 - 项目类别:
Continuing Grant
Trisections, triangulations and the complexity of manifolds
三等分、三角剖分和流形的复杂性
- 批准号:
DP190102259 - 财政年份:2019
- 资助金额:
$ 11.54万 - 项目类别:
Discovery Projects
Existence of 5-chromatic locally planar triangulations on closed surfaces and the weak Grunbaum's conjecture
闭曲面上五色局部平面三角剖分的存在性及弱格伦鲍姆猜想
- 批准号:
17K14239 - 财政年份:2017
- 资助金额:
$ 11.54万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
On the combinatorics of veering triangulations
关于转向三角测量的组合学
- 批准号:
1936817 - 财政年份:2017
- 资助金额:
$ 11.54万 - 项目类别:
Studentship