Efficient Triangulations, Decision Problems & Algorithms

高效的三角测量、决策问题

基本信息

  • 批准号:
    0505609
  • 负责人:
  • 金额:
    $ 11.75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-08-15 至 2009-05-31
  • 项目状态:
    已结题

项目摘要

The principal thrust of this research project is further development of efficient triangulations and their applications to the study and understanding of 3-manifolds. 0- and 1-efficient triangulations have lead to a number of new methods and results on triangulations of 3-manifolds, decision problems, algorithms, computational complexity, Heegaard splittings, and Dehn fillings. We propose to develop further our understanding of 0- and 1-efficient triangulations and to form a notion of g-efficient triangulations (g 1). Our goals are to make an explicit connection between efficient triangulations and geometric structures on 3-manifolds, to use efficient triangulations for a better understanding of Heegaard splittings of 3-manifolds, and to use our methods that reduce a given triangulation to an efficient triangulation to achieve a simplification to the solution of the Homeomorphism Problem for 3-manifolds (Classification of 3-manifolds). In particular, we propose new algorithms for deciding if a 3-manifold is a Haken manifold, for the JSJ decomposition of a 3-manifold and for the recognition of Haken manifolds.Three-dimensional manifolds are mathematical objects which are locally modeled on familiar three-dimensional space. The major problem in the study of three-manifolds is their classification, which is to make a complete list of all three-manifolds without duplications. The study and understanding of three-manifolds toward such a classification is the main objective of this project. In particular, we know that three-manifolds can be considered as a union of building blocks fitting together in a very organized way. For example, tetrahedra may be used as the building blocks; in this case, the collection of tetrahedra and the information about how they fit together is called a triangulation of the three-manifold. All three-manifolds can be triangulated. Thus one of the major strategies toward solving the classification problem is to find methods to recognize a particular three-manifold, having been given the three-manifold in one of its many possible triangulations. Applications of topology of three-manifolds range from questions of protein knotting and unknotting in DNA to the issue of the shape of space (the universe). In particular, the latter may very well come to an issue of recognizing the three-manifold that is our universe. Thus the classification and understanding of three-manifolds has far reaching applications and implications.
该研究项目的主要目标是进一步发展高效的三角剖分及其在三维流形研究和理解中的应用。0-和1-有效三角剖分导致了一些新的方法和结果的3-流形的三角剖分,决策问题,算法,计算复杂性,Heegaard分裂,和Dehn填充。我们建议进一步发展我们的理解0-和1-有效的三角剖分,并形成一个概念的g-有效的三角剖分(g 1)。我们的目标是建立有效三角剖分与三维流形上几何结构之间的明确联系,使用有效三角剖分来更好地理解三维流形的Heegaard分裂,并使用我们的方法将给定的三角剖分简化为有效三角剖分来实现三维流形同胚问题(三维流形的分类)的简化。 特别地,我们提出了判定3-流形是否为Haken流形、3-流形的JSJ分解和Haken流形识别的新算法。三维流形是在熟悉的三维空间上局部建模的数学对象。三维流形研究中的主要问题是分类问题,即把所有的三维流形不重复地列成一个完整的列表。本计画的主要目的是研究和了解三流形的分类。特别是,我们知道三流形可以被认为是以非常有组织的方式装配在一起的构建块的联合。例如,四面体可以用作构建块;在这种情况下,四面体的集合以及关于它们如何组合在一起的信息被称为三流形的三角测量。所有的三元流形都可以三角剖分。因此,解决分类问题的主要策略之一是找到识别特定三流形的方法,已经在其许多可能的三角剖分中给出了三流形。 三维流形拓扑学的应用范围从DNA中蛋白质的打结和解开到空间(宇宙)的形状。特别是,后者很可能会涉及到认识我们宇宙的三维流形的问题。因此,三维流形的分类和理解具有深远的应用和意义。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Jaco其他文献

Finitely presented subgroups of three-manifold groups
  • DOI:
    10.1007/bf01406083
  • 发表时间:
    1971-12-01
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    William Jaco
  • 通讯作者:
    William Jaco
Efficient triangulations and boundary slopes
  • DOI:
    10.1016/j.topol.2021.107689
  • 发表时间:
    2021-06-15
  • 期刊:
  • 影响因子:
  • 作者:
    Birch Bryant;William Jaco;J. Hyam Rubinstein
  • 通讯作者:
    J. Hyam Rubinstein
$$\mathbb Z _2$$ -Thurston norm and complexity of 3-manifolds
  • DOI:
    10.1007/s00208-012-0824-y
  • 发表时间:
    2012-06-21
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    William Jaco;J. Hyam Rubinstein;Stephan Tillmann
  • 通讯作者:
    Stephan Tillmann

William Jaco的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William Jaco', 18)}}的其他基金

The Mathematical Inquiry Project: Faculty Instructional Change for Enhanced Student Learning and Success in Entry-Level Mathematics
数学探究项目:教师教学改革以增强学生的学习和入门级数学的成功
  • 批准号:
    1821545
  • 财政年份:
    2018
  • 资助金额:
    $ 11.75万
  • 项目类别:
    Standard Grant
Strategic Direction for Mathematics Learning by Inquiry
探究式数学学习的策略方向
  • 批准号:
    1735643
  • 财政年份:
    2017
  • 资助金额:
    $ 11.75万
  • 项目类别:
    Standard Grant
Embedded and Immersed Surfaces in Three-Dimensional Topology
三维拓扑中的嵌入式和浸入式表面
  • 批准号:
    1308767
  • 财政年份:
    2013
  • 资助金额:
    $ 11.75万
  • 项目类别:
    Standard Grant
Geometry and Topology Down Under
澳大利亚的几何和拓扑
  • 批准号:
    1110730
  • 财政年份:
    2011
  • 资助金额:
    $ 11.75万
  • 项目类别:
    Standard Grant
Efficient Triangulations of Three-Manifolds
三流形的高效三角剖分
  • 批准号:
    0204707
  • 财政年份:
    2002
  • 资助金额:
    $ 11.75万
  • 项目类别:
    Continuing Grant
Essential Surfaces in Knot Exteriors: The Lopez Conjecture
结外部的基本表面:洛佩兹猜想
  • 批准号:
    9978071
  • 财政年份:
    2000
  • 资助金额:
    $ 11.75万
  • 项目类别:
    Standard Grant
Efficient Triangulations and Normal Surface Theory
高效的三角测量和法线表面理论
  • 批准号:
    9971719
  • 财政年份:
    1999
  • 资助金额:
    $ 11.75万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Efficient Triangulations and Normal Surface Theory
数学科学:高效三角测量和法向曲面理论
  • 批准号:
    9704833
  • 财政年份:
    1997
  • 资助金额:
    $ 11.75万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Geometric and Low-Dimensional Topology
数学科学:几何和低维拓扑
  • 批准号:
    8403571
  • 财政年份:
    1984
  • 资助金额:
    $ 11.75万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Research Conference on Analytic Number Theory and Diophantine Problems; Stillwater, Oklahoma; June 12-20, 1984
数学科学:解析数论与丢番图问题研究会议;
  • 批准号:
    8413414
  • 财政年份:
    1984
  • 资助金额:
    $ 11.75万
  • 项目类别:
    Standard Grant

相似海外基金

Quasiconformal analysis, optimal triangulations and fractal geometry
拟共形分析、最优三角剖分和分形几何
  • 批准号:
    2303987
  • 财政年份:
    2023
  • 资助金额:
    $ 11.75万
  • 项目类别:
    Standard Grant
Triangulations: linking geometry and topology with combinatorics
三角测量:用组合学将几何和拓扑联系起来
  • 批准号:
    DP220102588
  • 财政年份:
    2023
  • 资助金额:
    $ 11.75万
  • 项目类别:
    Discovery Projects
Veering Triangulations and Visualization
转向三角测量和可视化
  • 批准号:
    2203993
  • 财政年份:
    2022
  • 资助金额:
    $ 11.75万
  • 项目类别:
    Standard Grant
MPS-Ascend: Triangulations of the Product of Two Simplices and Matroids from Fine Mixed Subdivisions
MPS-Ascend:精细混合细分的两个单纯形和拟阵乘积的三角剖分
  • 批准号:
    2213323
  • 财政年份:
    2022
  • 资助金额:
    $ 11.75万
  • 项目类别:
    Fellowship Award
Affine cluster algebras as dynamical systems, surface triangulations, quiver representations and friezes
仿射簇代数作为动力系统、表面三角测量、箭袋表示和饰带
  • 批准号:
    21F20788
  • 财政年份:
    2021
  • 资助金额:
    $ 11.75万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
A study on graph colorings of triangulations and quadrangulations using the method of partial duality
部分对偶法对三角剖分和四边形图形着色的研究
  • 批准号:
    21K13831
  • 财政年份:
    2021
  • 资助金额:
    $ 11.75万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Algorithms and Data Structures for Robust 3D Geometry Processing via Intrinsic Triangulations
职业:通过内在三角测量进行鲁棒 3D 几何处理的算法和数据结构
  • 批准号:
    1943123
  • 财政年份:
    2020
  • 资助金额:
    $ 11.75万
  • 项目类别:
    Continuing Grant
Trisections, triangulations and the complexity of manifolds
三等分、三角剖分和流形的复杂性
  • 批准号:
    DP190102259
  • 财政年份:
    2019
  • 资助金额:
    $ 11.75万
  • 项目类别:
    Discovery Projects
Existence of 5-chromatic locally planar triangulations on closed surfaces and the weak Grunbaum's conjecture
闭曲面上五色局部平面三角剖分的存在性及弱格伦鲍姆猜想
  • 批准号:
    17K14239
  • 财政年份:
    2017
  • 资助金额:
    $ 11.75万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
On the combinatorics of veering triangulations
关于转向三角测量的组合学
  • 批准号:
    1936817
  • 财政年份:
    2017
  • 资助金额:
    $ 11.75万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了