Strategic Direction for Mathematics Learning by Inquiry

探究式数学学习的策略方向

基本信息

  • 批准号:
    1735643
  • 负责人:
  • 金额:
    $ 5.12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-07-01 至 2018-06-30
  • 项目状态:
    已结题

项目摘要

Mathematics learning by inquiry (MLI) employs active learning techniques, incorporation of meaningful applications of mathematics, and attention to broader academic skills. A growing evidence base indicates that MLI can have a positive impact on student learning and success in undergraduate mathematics. The goal of this project is to build a larger national community of instructors who employ MLI and education researchers who study MLI. To this end, this workshop project will bring leaders and representatives from among the MLI instructor community together with leaders and representatives from the research in undergraduate mathematics education community (RUME). By bringing together leaders and representatives from both the MLI and RUME communities, this project will form an initial step to forge a more formal and symbiotic collaboration between these two communities.Specifically, the workshops will produce a strategic plan for the Initiative for Mathematics Learning by Inquiry. This plan will focus on building a collaborative cycle through which the MLI initiative inspires education research projects, which in turn are used to inform the MLI initiative. The workshops themselves will be structured to employ active engagement and inquiry oriented problem solving. Each of an expected thirty participants will be actively engaged in the process with each having an opportunity to make a substantial contribution. Participants will develop national goals for a MLI initiative, identify strategies to reach these goals, and establish a strong collaboration between these communities to improve undergraduate mathematics education. This collaborative effort will strengthen the ability of the MLI initiative to support effective, sustainable, and scalable reforms in undergraduate mathematics education.
数学探究学习(MLI)采用主动学习技术,结合数学的有意义的应用,并关注更广泛的学术技能。越来越多的证据表明,MLI可以对学生的学习和本科数学的成功产生积极的影响。该项目的目标是建立一个更大的国家社区,由雇用MLI的教师和研究MLI的教育研究人员组成。为此,该研讨会项目将把MLI教师社区的领导人和代表与本科数学教育社区(RUME)研究的领导人和代表聚集在一起。通过将MLI和RUME社区的领导人和代表聚集在一起,该项目将成为这两个社区之间建立更正式和共生合作的第一步。具体而言,研讨会将为数学探究学习倡议制定战略计划。该计划将侧重于建立一个合作周期,通过该周期,MLI倡议激发教育研究项目,这些项目反过来又用于为MLI倡议提供信息。研讨会本身将采用积极参与和调查导向的问题解决。预计将有30名与会者积极参与这一进程,每个人都有机会作出实质性贡献。与会者将制定MLI倡议的国家目标,确定实现这些目标的战略,并在这些社区之间建立强有力的合作,以改善本科数学教育。这一合作努力将加强MLI倡议的能力,以支持本科数学教育的有效,可持续和可扩展的改革。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Jaco其他文献

Finitely presented subgroups of three-manifold groups
  • DOI:
    10.1007/bf01406083
  • 发表时间:
    1971-12-01
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    William Jaco
  • 通讯作者:
    William Jaco
Efficient triangulations and boundary slopes
  • DOI:
    10.1016/j.topol.2021.107689
  • 发表时间:
    2021-06-15
  • 期刊:
  • 影响因子:
  • 作者:
    Birch Bryant;William Jaco;J. Hyam Rubinstein
  • 通讯作者:
    J. Hyam Rubinstein
$$\mathbb Z _2$$ -Thurston norm and complexity of 3-manifolds
  • DOI:
    10.1007/s00208-012-0824-y
  • 发表时间:
    2012-06-21
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    William Jaco;J. Hyam Rubinstein;Stephan Tillmann
  • 通讯作者:
    Stephan Tillmann

William Jaco的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William Jaco', 18)}}的其他基金

The Mathematical Inquiry Project: Faculty Instructional Change for Enhanced Student Learning and Success in Entry-Level Mathematics
数学探究项目:教师教学改革以增强学生的学习和入门级数学的成功
  • 批准号:
    1821545
  • 财政年份:
    2018
  • 资助金额:
    $ 5.12万
  • 项目类别:
    Standard Grant
Embedded and Immersed Surfaces in Three-Dimensional Topology
三维拓扑中的嵌入式和浸入式表面
  • 批准号:
    1308767
  • 财政年份:
    2013
  • 资助金额:
    $ 5.12万
  • 项目类别:
    Standard Grant
Geometry and Topology Down Under
澳大利亚的几何和拓扑
  • 批准号:
    1110730
  • 财政年份:
    2011
  • 资助金额:
    $ 5.12万
  • 项目类别:
    Standard Grant
Efficient Triangulations, Decision Problems & Algorithms
高效的三角测量、决策问题
  • 批准号:
    0505609
  • 财政年份:
    2005
  • 资助金额:
    $ 5.12万
  • 项目类别:
    Standard Grant
Efficient Triangulations of Three-Manifolds
三流形的高效三角剖分
  • 批准号:
    0204707
  • 财政年份:
    2002
  • 资助金额:
    $ 5.12万
  • 项目类别:
    Continuing Grant
Essential Surfaces in Knot Exteriors: The Lopez Conjecture
结外部的基本表面:洛佩兹猜想
  • 批准号:
    9978071
  • 财政年份:
    2000
  • 资助金额:
    $ 5.12万
  • 项目类别:
    Standard Grant
Efficient Triangulations and Normal Surface Theory
高效的三角测量和法线表面理论
  • 批准号:
    9971719
  • 财政年份:
    1999
  • 资助金额:
    $ 5.12万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Efficient Triangulations and Normal Surface Theory
数学科学:高效三角测量和法向曲面理论
  • 批准号:
    9704833
  • 财政年份:
    1997
  • 资助金额:
    $ 5.12万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Geometric and Low-Dimensional Topology
数学科学:几何和低维拓扑
  • 批准号:
    8403571
  • 财政年份:
    1984
  • 资助金额:
    $ 5.12万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Research Conference on Analytic Number Theory and Diophantine Problems; Stillwater, Oklahoma; June 12-20, 1984
数学科学:解析数论与丢番图问题研究会议;
  • 批准号:
    8413414
  • 财政年份:
    1984
  • 资助金额:
    $ 5.12万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Heat Penetration Depth and Direction Control with Closed-Loop Device for Precision Ablation
职业:利用闭环装置控制热穿透深度和方向,实现精确烧蚀
  • 批准号:
    2338890
  • 财政年份:
    2024
  • 资助金额:
    $ 5.12万
  • 项目类别:
    Continuing Grant
Contribution of Endothelial Planar Cell Polarity pathways in Blood Flow Direction Sensing
内皮平面细胞极性通路在血流方向传感中的贡献
  • 批准号:
    10750690
  • 财政年份:
    2024
  • 资助金额:
    $ 5.12万
  • 项目类别:
Towards the Future Direction of the NSF Program on the Cyberinfrastructure for Sustained Scientific Innovation (CSSI)
NSF 持续科学创新网络基础设施 (CSSI) 计划的未来方向
  • 批准号:
    2314201
  • 财政年份:
    2023
  • 资助金额:
    $ 5.12万
  • 项目类别:
    Standard Grant
The torque around the axial direction of rotating detoantion engines
旋转爆震发动机绕轴向的扭矩
  • 批准号:
    23KJ1084
  • 财政年份:
    2023
  • 资助金额:
    $ 5.12万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
A New Direction in Accounting Education for IT Human Resources
IT人力资源会计教育的新方向
  • 批准号:
    23K01686
  • 财政年份:
    2023
  • 资助金额:
    $ 5.12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The development for graphite domain direction mesurement of carbonaceous hard coating topmost surface via electric direction controlled SERS
电控方向SERS测量碳质硬质涂层最表面石墨畴方向的研究进展
  • 批准号:
    23H01327
  • 财政年份:
    2023
  • 资助金额:
    $ 5.12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Analysis of processing, transportation and secreting direction in type I collagen at the molecular and cellular level
在分子和细胞水平上分析 I 型胶原蛋白的加工、运输和分泌方向
  • 批准号:
    23K05749
  • 财政年份:
    2023
  • 资助金额:
    $ 5.12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Testing the timing and direction of mantle exhumation at the Iberia-Newfoundland margins with low-temperature thermochronology
合作研究:用低温热年代学测试伊比利亚-纽芬兰边缘地幔折返的时间和方向
  • 批准号:
    2405731
  • 财政年份:
    2023
  • 资助金额:
    $ 5.12万
  • 项目类别:
    Standard Grant
Partisanship and Innovation: Exploring the Link between Partisanship and the Rate and Direction of Inventive Activity
党派之争与创新:探索党派之争与发明活动的速率和方向之间的联系
  • 批准号:
    2244885
  • 财政年份:
    2023
  • 资助金额:
    $ 5.12万
  • 项目类别:
    Standard Grant
Study on basic characteristics of VR sickness induced by visually inclined direction of gravity in virtual environment
虚拟环境中视觉重力方向倾斜引起的VR晕眩基本特征研究
  • 批准号:
    23H03447
  • 财政年份:
    2023
  • 资助金额:
    $ 5.12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了