Geometry and Topology Down Under

澳大利亚的几何和拓扑

基本信息

  • 批准号:
    1110730
  • 负责人:
  • 金额:
    $ 3.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-05-01 至 2012-04-30
  • 项目状态:
    已结题

项目摘要

A Workshop and Conference is being held at the University of Melbourne, Australia, to bring together active, leading, international experts and emerging researchers to report on recent results and explore future directions in the field of Geometry and Topology. Particular emphasis will be placed on one of its most active branches, the study of 3-manifolds. Geometric structures on 3-manifolds are known to exist by Perelman's work on the Ricci flow, but relatively little is known about the interplay between analysis and geometry, and how to construct geometric structures directly. The Workshop will be targeted at early career researchers and will feature short courses covering a broad range of materials and techniques being used at the frontier of research in dynamical and probabilistic methods in geometric group theory, invariants of hyperbolic 3-manifolds, and new methods in distinguishing knots and links. The Conference will highlight ongoing research focused on finding direct connections between analysis, geometry, and topology of 3-manifolds. This project will enable Early Research Career mathematicians from the United States to attend a Workshop and Conference at the University of Melbourne, Australia, on recent results and new directions in the geometry and topology of 3-manifolds. This is one of the most active and rapidly changing areas of mathematical research. Participation will give these young researchers access to short courses on new results and techniques for future research and bring them together with leading international experts in the area. The Workshop and Conference will have broad appeal to group theorists, analysts, differential geometers, and low-dimensional topologists. It will bring about interaction between emerging researchers and experts and expose the potential for future collaborations.
正在澳大利亚墨尔本大学举行一次讲习班和会议,将活跃的、领先的国际专家和新兴研究人员聚集在一起,报告几何和拓扑学领域的最新成果并探讨未来的方向。特别强调将放在其最活跃的分支之一,3流形的研究。 3-流形上的几何结构通过佩雷尔曼关于里奇流的工作而被发现,但对于分析和几何之间的相互作用以及如何直接构造几何结构知之甚少。该研讨会将针对早期的职业研究人员,并将提供短期课程,涵盖广泛的材料和技术,用于几何群论中的动力学和概率方法研究的前沿,双曲3-流形的不变量,以及区分结和链接的新方法。会议将突出正在进行的研究,重点是寻找分析,几何和3-流形拓扑之间的直接联系。该项目将使来自美国的早期研究职业数学家能够参加在澳大利亚墨尔本大学举行的研讨会和会议,讨论三维流形几何和拓扑学的最新成果和新方向。 这是数学研究中最活跃和变化最快的领域之一。参与将使这些年轻的研究人员有机会参加关于未来研究新成果和技术的短期课程,并使他们与该领域的主要国际专家聚集在一起。研讨会和会议将有广泛的吸引力组理论家,分析师,微分geometers,和低维拓扑学家。它将带来新兴研究人员和专家之间的互动,并揭示未来合作的潜力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Jaco其他文献

Finitely presented subgroups of three-manifold groups
  • DOI:
    10.1007/bf01406083
  • 发表时间:
    1971-12-01
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    William Jaco
  • 通讯作者:
    William Jaco
Efficient triangulations and boundary slopes
  • DOI:
    10.1016/j.topol.2021.107689
  • 发表时间:
    2021-06-15
  • 期刊:
  • 影响因子:
  • 作者:
    Birch Bryant;William Jaco;J. Hyam Rubinstein
  • 通讯作者:
    J. Hyam Rubinstein
$$\mathbb Z _2$$ -Thurston norm and complexity of 3-manifolds
  • DOI:
    10.1007/s00208-012-0824-y
  • 发表时间:
    2012-06-21
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    William Jaco;J. Hyam Rubinstein;Stephan Tillmann
  • 通讯作者:
    Stephan Tillmann

William Jaco的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William Jaco', 18)}}的其他基金

The Mathematical Inquiry Project: Faculty Instructional Change for Enhanced Student Learning and Success in Entry-Level Mathematics
数学探究项目:教师教学改革以增强学生的学习和入门级数学的成功
  • 批准号:
    1821545
  • 财政年份:
    2018
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
Strategic Direction for Mathematics Learning by Inquiry
探究式数学学习的策略方向
  • 批准号:
    1735643
  • 财政年份:
    2017
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
Embedded and Immersed Surfaces in Three-Dimensional Topology
三维拓扑中的嵌入式和浸入式表面
  • 批准号:
    1308767
  • 财政年份:
    2013
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
Efficient Triangulations, Decision Problems & Algorithms
高效的三角测量、决策问题
  • 批准号:
    0505609
  • 财政年份:
    2005
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
Efficient Triangulations of Three-Manifolds
三流形的高效三角剖分
  • 批准号:
    0204707
  • 财政年份:
    2002
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Continuing Grant
Essential Surfaces in Knot Exteriors: The Lopez Conjecture
结外部的基本表面:洛佩兹猜想
  • 批准号:
    9978071
  • 财政年份:
    2000
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
Efficient Triangulations and Normal Surface Theory
高效的三角测量和法线表面理论
  • 批准号:
    9971719
  • 财政年份:
    1999
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Efficient Triangulations and Normal Surface Theory
数学科学:高效三角测量和法向曲面理论
  • 批准号:
    9704833
  • 财政年份:
    1997
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Research Conference on Analytic Number Theory and Diophantine Problems; Stillwater, Oklahoma; June 12-20, 1984
数学科学:解析数论与丢番图问题研究会议;
  • 批准号:
    8413414
  • 财政年份:
    1984
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Geometric and Low-Dimensional Topology
数学科学:几何和低维拓扑
  • 批准号:
    8403571
  • 财政年份:
    1984
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Continuing Grant

相似海外基金

Conference: 57th Spring Topology and Dynamical Systems Conference
会议:第57届春季拓扑与动力系统会议
  • 批准号:
    2348830
  • 财政年份:
    2024
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
Conference: Underrepresented Students in Algebra and Topology Research Symposium (USTARS)
会议:代数和拓扑研究研讨会(USTARS)中代表性不足的学生
  • 批准号:
    2400006
  • 财政年份:
    2024
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
CAREER: Geometry and topology of quantum materials
职业:量子材料的几何和拓扑
  • 批准号:
    2340394
  • 财政年份:
    2024
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Continuing Grant
Conference: Midwest Topology Seminar
会议:中西部拓扑研讨会
  • 批准号:
    2341204
  • 财政年份:
    2024
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
Topology in many-body quantum systems in and out of equilibrium
处于平衡状态和非平衡状态的多体量子系统中的拓扑
  • 批准号:
    2300172
  • 财政年份:
    2024
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Continuing Grant
Algebraic Structures in String Topology
弦拓扑中的代数结构
  • 批准号:
    2405405
  • 财政年份:
    2024
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
Conference: Combinatorial and Analytical methods in low-dimensional topology
会议:低维拓扑中的组合和分析方法
  • 批准号:
    2349401
  • 财政年份:
    2024
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
  • 批准号:
    24K06659
  • 财政年份:
    2024
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Stability conditions: their topology and applications
稳定性条件:拓扑和应用
  • 批准号:
    DP240101084
  • 财政年份:
    2024
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Projects
Algorithmic topology in low dimensions
低维算法拓扑
  • 批准号:
    EP/Y004256/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了