Essential Surfaces in Knot Exteriors: The Lopez Conjecture
结外部的基本表面:洛佩兹猜想
基本信息
- 批准号:9978071
- 负责人:
- 金额:$ 3.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-01-01 至 2000-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal ID: DMS-9978071Proposal Title: Surfaces in knot exteriors: The Lopez Conjecture.Principal Investigator: Dr. William H. JacoAbstract: This project involves a Special Semester at Stanford University and The American Institute of Mathematics bringing together a team of four senior investigators, two postdoctoral fellows and two advanced graduate students for an intense and collaborative study of essential surfaces in knot exteriors. Two of the senior investigators have been working on a program over the past two decades to detect certain knots by properties of essential surfaces in the knot exterior. Their methods have been very successful in identifying such properties but do not lead to methods that will enable one to realize such knots. The other two senior investigators have in the last three years developed new methods for realizing knots having interesting properties. This project will bring these two methods together to address one of the most outstanding problems in this area of mathematical research.Low-dimensional topology brings together many areas of mathematical research and provides a common ground for interaction and advance across all of mathematics. It provides a natural geometric model of most physical phenomena. Research in this area is making significant contribution to computational geometry and topology and complexity theory. It has consequences in physics, computer visualization and medical modeling.
提案ID:DMS-9978071提案标题:结外部表面:洛佩斯猜想。主要研究员:William H.博士。中文摘要:这个项目涉及一个特殊的学期在斯坦福大学和美国数学研究所汇集了一个团队的四名高级研究员,两名博士后研究员和两名高级研究生的紧张和合作的研究结外部的基本表面。在过去的二十年里,两名高级研究人员一直在研究一个项目,通过结外部基本表面的特性来检测某些结。他们的方法在识别此类属性方面非常成功,但并没有产生能够实现此类结的方法。另外两名高级研究人员在过去三年中开发了实现具有有趣特性的结的新方法。这个项目将把这两种方法结合起来,以解决这一领域的数学研究中最突出的问题之一。低维拓扑汇集了数学研究的许多领域,并为所有数学的互动和进步提供了一个共同的基础。它为大多数物理现象提供了一个自然的几何模型。这一领域的研究对计算几何、拓扑学和复杂性理论做出了重要贡献。它在物理学、计算机可视化和医学建模中具有重要意义。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Jaco其他文献
Finitely presented subgroups of three-manifold groups
- DOI:
10.1007/bf01406083 - 发表时间:
1971-12-01 - 期刊:
- 影响因子:3.600
- 作者:
William Jaco - 通讯作者:
William Jaco
Efficient triangulations and boundary slopes
- DOI:
10.1016/j.topol.2021.107689 - 发表时间:
2021-06-15 - 期刊:
- 影响因子:
- 作者:
Birch Bryant;William Jaco;J. Hyam Rubinstein - 通讯作者:
J. Hyam Rubinstein
$$\mathbb Z _2$$ -Thurston norm and complexity of 3-manifolds
- DOI:
10.1007/s00208-012-0824-y - 发表时间:
2012-06-21 - 期刊:
- 影响因子:1.400
- 作者:
William Jaco;J. Hyam Rubinstein;Stephan Tillmann - 通讯作者:
Stephan Tillmann
William Jaco的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William Jaco', 18)}}的其他基金
The Mathematical Inquiry Project: Faculty Instructional Change for Enhanced Student Learning and Success in Entry-Level Mathematics
数学探究项目:教师教学改革以增强学生的学习和入门级数学的成功
- 批准号:
1821545 - 财政年份:2018
- 资助金额:
$ 3.73万 - 项目类别:
Standard Grant
Strategic Direction for Mathematics Learning by Inquiry
探究式数学学习的策略方向
- 批准号:
1735643 - 财政年份:2017
- 资助金额:
$ 3.73万 - 项目类别:
Standard Grant
Embedded and Immersed Surfaces in Three-Dimensional Topology
三维拓扑中的嵌入式和浸入式表面
- 批准号:
1308767 - 财政年份:2013
- 资助金额:
$ 3.73万 - 项目类别:
Standard Grant
Efficient Triangulations, Decision Problems & Algorithms
高效的三角测量、决策问题
- 批准号:
0505609 - 财政年份:2005
- 资助金额:
$ 3.73万 - 项目类别:
Standard Grant
Efficient Triangulations of Three-Manifolds
三流形的高效三角剖分
- 批准号:
0204707 - 财政年份:2002
- 资助金额:
$ 3.73万 - 项目类别:
Continuing Grant
Efficient Triangulations and Normal Surface Theory
高效的三角测量和法线表面理论
- 批准号:
9971719 - 财政年份:1999
- 资助金额:
$ 3.73万 - 项目类别:
Standard Grant
Mathematical Sciences: Efficient Triangulations and Normal Surface Theory
数学科学:高效三角测量和法向曲面理论
- 批准号:
9704833 - 财政年份:1997
- 资助金额:
$ 3.73万 - 项目类别:
Standard Grant
Mathematical Sciences: Geometric and Low-Dimensional Topology
数学科学:几何和低维拓扑
- 批准号:
8403571 - 财政年份:1984
- 资助金额:
$ 3.73万 - 项目类别:
Continuing Grant
Mathematical Sciences: Research Conference on Analytic Number Theory and Diophantine Problems; Stillwater, Oklahoma; June 12-20, 1984
数学科学:解析数论与丢番图问题研究会议;
- 批准号:
8413414 - 财政年份:1984
- 资助金额:
$ 3.73万 - 项目类别:
Standard Grant
相似海外基金
A characterization of a ribbon knot with property of surfaces in the knot complement
用结补中的表面特性表征丝带结
- 批准号:
16K05145 - 财政年份:2016
- 资助金额:
$ 3.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Positions and surfaces of a knot
结的位置和表面
- 批准号:
23540105 - 财政年份:2011
- 资助金额:
$ 3.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conformal geometry of curves and surfaces and geometric knot theory
曲线曲面共形几何与几何结理论
- 批准号:
21540089 - 财政年份:2009
- 资助金额:
$ 3.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on knot theory using essential surfaces
使用本质曲面的纽结理论研究
- 批准号:
18540069 - 财政年份:2006
- 资助金额:
$ 3.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research of global knot theory in thickened surfaces
加厚曲面全局结理论研究
- 批准号:
17540062 - 财政年份:2005
- 资助金额:
$ 3.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Knot and 3-Manifold Invariants, Seifert Surfaces and Dehn Surgery
结和 3 流形不变量、Seifert 曲面和 Dehn 手术
- 批准号:
0104000 - 财政年份:2001
- 资助金额:
$ 3.73万 - 项目类别:
Standard Grant
Mathematical Sciences: Problems in Knot Theory and Low- Dimensional Topology: Applications of Quasipositive Knots and Surfaces
数学科学:结理论和低维拓扑问题:拟正结和曲面的应用
- 批准号:
9504832 - 财政年份:1995
- 资助金额:
$ 3.73万 - 项目类别:
Standard Grant
Mathematical Sciences: Unknotting Numbers, and Essential Surfaces and Laminations in Knot Exteriors
数学科学:解开数字、结外部的基本表面和叠片
- 批准号:
9123655 - 财政年份:1992
- 资助金额:
$ 3.73万 - 项目类别:
Standard Grant