Model Theory of Fields and Diophantine Geometry
场模型论和丢番图几何
基本信息
- 批准号:0071890
- 负责人:
- 金额:$ 8.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-07-01 至 2003-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Scanlon investigates the structure of definable sets in theories of enriched fields with an eye towards applications in diophantine and algebraic geometry. In many theories of enriched fields, for example differential, difference and valued D-fields, the definable sets are known to enjoy strong regularity properties, but in most cases the determination of the full induced structure on even one-dimensional sets has proved elusive. Scanlon seeks to determine this structure on minimal sets in differentially closed and difference closed fields and to resolve foundational issues for the theory of valued D-fields in preparation to study the fine structure of their definable sets. The main trichotomy theorem on Zariski geometries, or more exactly the locally modular versus non-orthogonal to an infinite field dichotomy for Zariski groups, implies finiteness and uniformity theorems for certain subgroups and subvarieties of algebraic groups. Scanlon exploits this connection, especially by studying extensions of the Drinfeld module analogue of the Manin-Mumford conjecture to higher dimensional T-modules and of the Tate-Voloch conjecture in the case of p-adically transcendental moduli. Scanlon searches for mathematically meaningful interpretations of the triviality of certain definable sets in differential or difference fields by concentrating on certain subsets of moduli spaces of Shimura varieties definable in some difference closed fields. Scanlon studies inverse problems in model theoretic algebra. Specifically, Scanlon addresses the questions of which fields are stable and which fields are supersimple. Scanlon undertakes this project to exhibit how the deep, though apparently abstract, theorems of stability theory manifest themselves in concrete mathematical practice. Some such phenomena have already been discovered. Given the strength of these abstract theorems, a systematic search to interpret them can only lead to strong uniformity results on the number and properties of solutions to algebraic, differential, and difference equations not readily perceived from an elementary perspective.
斯坎伦调查结构的可定义集理论的丰富领域的眼睛对应用丢番图和代数几何。在许多丰富域的理论中,例如微分、差分和赋值D-域,已知可定义集合具有强正则性,但在大多数情况下,即使是一维集合上的完全诱导结构的确定也被证明是难以捉摸的。斯坎伦试图确定这种结构的最小集在差分封闭和差分封闭领域,并解决基础问题的理论价值的D-领域准备研究精细结构的可定义集。Zurski几何的主要二分法定理,或者更确切地说,Zurski群的局部模与非正交于无限域二分法,暗示了代数群的某些子群和子簇的有限性和一致性定理。斯坎伦利用这种联系,特别是通过研究延拓德林费尔德模模拟的马宁-芒福德猜想,以高维T-模和泰特-沃洛赫猜想的情况下,p-adically超越模。斯坎伦搜索数学上有意义的解释平凡的某些定义集的微分或差异领域集中在某些子集的模空间的志村品种定义在一些不同的封闭领域。Scanlon研究模型论代数中的逆问题。具体来说,斯坎伦解决了哪些领域是稳定的,哪些领域是超简单的问题。 斯坎伦承担这个项目展示如何深刻的,虽然显然是抽象的,定理的稳定性理论体现在具体的数学实践。 一些这样的现象已经被发现了。 鉴于这些抽象定理的强度,系统的搜索来解释它们只能导致代数,微分和差分方程的解的数量和性质的强一致性结果,从初等的角度来看不容易察觉。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Scanlon其他文献
Dialysis After Left Ventricular Assist Device Implantation
- DOI:
10.1016/j.cardfail.2020.09.442 - 发表时间:
2020-10-01 - 期刊:
- 影响因子:
- 作者:
Annie Tsay;Lori Ober;Behzad Soleimani;Robert Dowling;Jordan Shouey;Omaima Ali;Thomas Scanlon;Robert Oblender;Howard Joel Eisen - 通讯作者:
Howard Joel Eisen
Groupes définissables dans des expansions de théories stables Ampleur et notions relatives
理论稳定和相关概念扩展中的可定义群体
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
C. Jordan;A. Martin;E. Bouscaren;David Evans;B. Poizat;Thomas Scanlon - 通讯作者:
Thomas Scanlon
Public Key Cryptosystems Based on Drinfeld Modules Are Insecure
- DOI:
10.1007/s00145-001-0004-9 - 发表时间:
2001-04-09 - 期刊:
- 影响因子:2.200
- 作者:
Thomas Scanlon - 通讯作者:
Thomas Scanlon
Algebraic equations on the adèlic closure of a Drinfeld module
- DOI:
10.1007/s11856-012-0072-6 - 发表时间:
2012-05-29 - 期刊:
- 影响因子:0.800
- 作者:
Dragos Ghioca;Thomas Scanlon - 通讯作者:
Thomas Scanlon
Algorithm for finding new identifiable reparametrizations of parametric ODEs
寻找参数常微分方程新的可识别重参数化的算法
- DOI:
10.48550/arxiv.2310.03057 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
N. Meshkat;Alexey Ovchinnikov;Thomas Scanlon - 通讯作者:
Thomas Scanlon
Thomas Scanlon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Scanlon', 18)}}的其他基金
Travel: Model Theory of Valued Fields at CIRM
旅行:CIRM 有价值领域的模型理论
- 批准号:
2322918 - 财政年份:2023
- 资助金额:
$ 8.13万 - 项目类别:
Standard Grant
Algebraicity, Transcendence, and Decidability in Arithmetic and Geometry through Model Theory
通过模型理论研究算术和几何中的代数性、超越性和可判定性
- 批准号:
2201045 - 财政年份:2022
- 资助金额:
$ 8.13万 - 项目类别:
Continuing Grant
CAREER: Model Theory and Homogeneous Structures
职业:模型理论和齐次结构
- 批准号:
1848562 - 财政年份:2019
- 资助金额:
$ 8.13万 - 项目类别:
Continuing Grant
From Permutation Groups to Model Theory
从置换群到模型论
- 批准号:
1824208 - 财政年份:2018
- 资助金额:
$ 8.13万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Model Theory of Differential and Difference Equations with Applications
FRG:协作研究:微分方程和差分方程的模型理论及其应用
- 批准号:
1760413 - 财政年份:2018
- 资助金额:
$ 8.13万 - 项目类别:
Standard Grant
Model Theory: Connecting Algebraic, Analytic, and Diophantine Geometry Through Definability
模型理论:通过可定义性连接代数、解析和丢番图几何
- 批准号:
1800492 - 财政年份:2018
- 资助金额:
$ 8.13万 - 项目类别:
Continuing Grant
Conference/Workshop: Trimester on Model Theory, Combinatorics, and Valued Fields; Spring, 2018; Paris, France
会议/研讨会:模型理论、组合学和值域的三个学期;
- 批准号:
1744167 - 财政年份:2017
- 资助金额:
$ 8.13万 - 项目类别:
Standard Grant
Arithmetic and algebraic differentiation: Witt vectors, number theory, and differential algebra
算术和代数微分:维特向量、数论和微分代数
- 批准号:
1502219 - 财政年份:2015
- 资助金额:
$ 8.13万 - 项目类别:
Standard Grant
Model Theory, Difference/Differential Equations, and Applications
模型理论、差分/微分方程和应用
- 批准号:
1500920 - 财政年份:2015
- 资助金额:
$ 8.13万 - 项目类别:
Standard Grant
Model Theory of Generalized Differential Equations and Diophantine Geometry
广义微分方程模型论与丢番图几何
- 批准号:
1363372 - 财政年份:2014
- 资助金额:
$ 8.13万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Travel: Model Theory of Valued Fields at CIRM
旅行:CIRM 有价值领域的模型理论
- 批准号:
2322918 - 财政年份:2023
- 资助金额:
$ 8.13万 - 项目类别:
Standard Grant
Model Theory of Valued Differential Fields
值微分场模型论
- 批准号:
2154086 - 财政年份:2022
- 资助金额:
$ 8.13万 - 项目类别:
Continuing Grant
Model theory of D-large fields and connections to representation theory.
D-大域的模型理论以及与表示理论的联系。
- 批准号:
EP/V03619X/1 - 财政年份:2022
- 资助金额:
$ 8.13万 - 项目类别:
Research Grant
Model theory of expansions of valued fields
有价值领域扩展的模型理论
- 批准号:
RGPIN-2016-05431 - 财政年份:2021
- 资助金额:
$ 8.13万 - 项目类别:
Discovery Grants Program - Individual
Model theory of expansions of fields with analytic functions
具有解析函数的域展开模型论
- 批准号:
2593855 - 财政年份:2021
- 资助金额:
$ 8.13万 - 项目类别:
Studentship
Model theory of expansions of valued fields
有价值领域扩展的模型理论
- 批准号:
RGPIN-2016-05431 - 财政年份:2020
- 资助金额:
$ 8.13万 - 项目类别:
Discovery Grants Program - Individual
Model theory of expansions of fields with analytic functions
具有解析函数的域展开模型论
- 批准号:
2273512 - 财政年份:2019
- 资助金额:
$ 8.13万 - 项目类别:
Studentship
Model theory of fields and compact complex manifolds
场模型论和紧复流形
- 批准号:
RGPIN-2015-04155 - 财政年份:2019
- 资助金额:
$ 8.13万 - 项目类别:
Discovery Grants Program - Individual
Model Theory of Valued Fields and Applications
有价值领域模型理论及其应用
- 批准号:
1922826 - 财政年份:2019
- 资助金额:
$ 8.13万 - 项目类别:
Standard Grant
Model theory of expansions of valued fields
有价值领域扩展的模型理论
- 批准号:
RGPIN-2016-05431 - 财政年份:2019
- 资助金额:
$ 8.13万 - 项目类别:
Discovery Grants Program - Individual